

Session 3.3

Wall-E: Promoting innovation, new technologies and future visions on the role of urban forests and trees to address climate change.

Moderator: Stephen Livesley

World Forum on Urban Forests

Beyond Education and Engagement

How the Oak Bay Coolkit program empowers climate champions in greening private and public land

Stephen R.J. Sheppard (PhD), CALP, UBC, Canada Chris Hyde-Lay, District of Oak Bay, Canada Elisa Kwun, CALP, UBC, Canada Sara Barron (PhD), Urban Forestry Program, UBC, Canada

How do we scale-up community action on Urban Forestry & the Climate Emergency?

- collective action at hyper-local scales
- 'cool tools' & positive engagement processes

Why the urban forestry angle?

- urban forests as an easy entry point
- meeting canopy targets on private land
- resilience cooling communities etc.

Presentation Overview

- 1. Introduce Oak Bay
- 2. The Oak Bay Coolkit and mobilization program
- 3. Results so far: champions, Climate Action Plans & trees on the ground
- 4. Scaling-up and replicability

1 District of Oak Bay

Vancouver Island, British Columbia, Canada

- Population:18,000
- Primarily residential
- Canopy cover: 33%, target 40% by 2045
- Rare ecosystems & strong volunteer programs on ecological restoration
- Significant vulnerabilities in low-canopy neighbourhoods to heat, drought, wind, flooding/sea level rise etc.
- Leading policies: zoning canopy targets, electrical gardening equipment, engagement

2 Oak Bay Coolkit program

OAK BAY COOLKIT

Goals:

- Empowering local climate champions
- Mobilizing neighbourhood action to climate-proof the community (adaptation & mitigation)
- Making climate action & stewardship visible on private & public land

Council support/funding for 3 year program

Oak Bay Coolkit

Fun 'Do-It-Yourself' visual learning tool

- engaging citizens on climate change & urban forestry on their block
- applying 7 years of Coolkit research
- 'one-stop-shop' resource, customized to Oak Bay

IVIAP TOUR DLUCK **URBAN FOREST QUEST**

DO YOU KNOW ... How much squirrel habitat is on your block? How many trees there are on your block? Why trees are important to us and squirrels?

Your name/team name

right-of-way. Count the number of street trees on your b 6 5 4

3) THE LEAPING SQUIRREL TEST

Check out your block's street tree canopy by using the distance

a squirrel leaps. Squirrels live up in the trees and are safer there

than on the ground. Assume squirrels can leap about 2 metres

can a squirrel make it from one end of the block to the other and cross the street at least twice, without coming down to the ground?

If "No", how many gaps (greater than 2 metres)

Yes / No

(6 ft or a person's height) between branches:

between canopies did you see?

Total # of street t

(30 minutes

Important because ...

Larger trees have bigger canopies and so more benefits. Smaller trees are also important since they will replace existing big trees

important because.. A continuous canopy has more shade during the summer for cooling and reduces stormwater flooding.

Groups map:

High vulnerability features

State of the local division in the local div

• Resilience assets "The most inspiring activity was going outside and measuring trees. We got to know about our **community**" (Coolkit workshop participant in Vancouver)

Visioning solutions

- Tree planting
- Active transportation
- Heat pumps
- Home energy retrofits
- Rain-gardens
- De-paving 'car habitat'
- Rewilding parklets, etc.

"wonderful example of activity at extremely local level....empowering... really tangible..." Teacher, Vancouver School Board

Climate Action Plans group brainstorming

Discuss/pick 3 key actions as priorities for your neighbourhood or group

ACTION PLAN PRIORITIZE & MAKE A PLEDGE

3 Coolkit Program Results Years 1-2

Geographic spread

- 10 neighbourhood groups + individual projects
- reaching 10-12% of Oak Bay blocks

Broad representation

- network of 40+ trained Coolkit champions
- including 'The Choir' & neighbours, family members etc.

Creatively engaging others & building capacity

- Block parties
- 'Ice Cream Socials'
- Block Watch meeting
- Strata council meetings
- 'InTreeging' proposal
- Walkability audits.....
- Emergency Response volunteers
- Community-led Facebook site
- Official celebration event with Champion Awards

Harling Point neighbourhood Climate Action Planning

Overview of Climate Action Plans

□ 10+ climate action plans / project designs:

- physical and behavioural solutions
- Adaptation and Mitigation tree-planting, meadowscapes, traffic calming, white roofs, local food etc.
- aligned with Oak Bay Council's "Big Moves"
- Some CAPs require joint resident/District action on public & private land:
 - street bump-outs, de-paving parking lot, landscape/tree stewardship etc.

□ Collaborative outcomes to date:

- 60 Coolkit trees planted on private & public land
- strata council plan for cool roofs
- Oak Bay tree-list for citizens
- monthly Coolkit meetings/presentations
- to make climate projects visible neighbourhood signage

4 Scaling-up and replicability

for community climate & urban forest action

□ Scaling-up neighbourhood action is doable & crucial to meeting targets (eg. private trees)

□ Tips for organizers:

- Tools & processes applicable across N. America & beyond, but customize to your community
- Make it visual, fun, simple, positive!
- Trees & pollinators a good entry-point but will need broader/deeper actions (aligned with municipal policies)

$\hfill\square$ Needs:

- Train-the-trainer programs for practitioners & community organizers (eg. micro-certificates)
- Sustained, funded, collaborative programs with designated backbone organization (eg. municipality, contracted NGO, community trust)

希 > Future Students > Graduate Programs > Professional Master's Degrees > Master of Urban Forestry Leadership (Onlin

https://forestry.ubc.ca/mufl

MASTER OF URBAN FORESTRY LEADERSHIP (ONLINE)

Thank you!

- Stephen R.J. Sheppard, CALP, UBC
- Chris Hyde-Lay, District of Oak Bay
- Elisa Kwun, CALP, UBC, Canada
- Sara Barron, Urban Forestry Program, UBC

Collaborative for Advanced Landscape Planning <u>https://calp.forestry.ubc.ca/</u>

https://connect.oakbay.ca/coolkit

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Session 3.3

No easy shortcuts to a 'green future': lessons from imagining 2050s desired urban futures in six cities

Presented by

Dr. Mariana Dias Baptista Co-authors: Olivia Bina, Andy Inch, Mafalda Pereira, Roberto Falanga Principal Investigator: Tom Wild

Agenda

Overview Nature Futures Workshops Methodology Results & Discussions Next Steps

Overview

- Conexus H2020 EU Project
- Latin American and European partners
- Aim: to strengthen international cooperation on nature-based solutions (NBS) and ecosystem restoration.
- Urban Life-Labs* in 7 cities.

*collaboration and partnerships with local communities of learning to support the development of NBS pilot projects.

CONEXUS

Nature-based Solutions

 The United Nation Environmental Assembly (UNEA-5) resolution formally adopted the definition of NbS as 'actions to protect, conserve, restore, sustainably use and manage natural or modified terrestrial, freshwater, coastal and marine ecosystems, which address social, economic and environmental challenges effectively and adaptively, while simultaneously providing human well-being, ecosystem services and resilience and biodiversity benefits."

Nature Futures Workshops

Desired Futures

- 'Cities are creating futures without challenging the deep inequities' (Inayatullah 2011, p. 656), partly linked to persistent imaginaries of cities as machines.
- A gap in terms of **positive future visions** that are needed in many cities (McPhearson et al. 2016; more generally, see: Bai et al. 2016), and more specifically in exploring urban related imaginaries and pathways that foreground nature and plural perspectives of urban HNRs (Elmqvist et al. 2013; Mansur et al. 2022).
- There are calls for alternative visions beyond 'merely purchasing the used futures of other cities' (Inayatullah 2011, p.654), enabled through a (re)discovery of desire and utopian imaginaries (Bina et al. 2020 ; Pötz 2019).

Bina, O., Baptista, M.D., Pereira, M. M, et al. (Under review) Exploring desired urban futures: the transformative potential of a nature-based approach. Futures

Objectives

The Workshops were an opportunity to think about a naturebased future in the cities of Conexus, through a **more creative way**.

Explore wishes, hopes and possibilities around the idea of nature-based futures for cities in the year 2050.

Engage a variety of perspectives and plurality of voices in discovering desired futures for nature (and life) in cities;

Why 2050?

Because the scale and scope of the transformation we are considering is the kind of longterm change that requires a generation, as it includes social values and attitudes.

FUTURE

Who?

NbS-Community:

• A variety of leaders, experts and agents of change involved directly and indirectly in the future of nature (and life).

• Local government, academics, NGOs, and activists.

Expected to co-create:

- Elements of a desired future for nature (and life) in cities in 2050
- Elements of pathways to get there, which will include NbS.

METHODOLOGY

The Three Horizons

Three Horizons approach (Sharpe et al., 2016): understanding the current world and creating representations of desired future states.

Horizon 1 - The Present Futures:

• Where participants discuss the current trends that determine the "business as usual" of our cities;

Horizon 3 - The Futures We Want:

• where participants set out their visions;

Horizon 2 - Possible Ways Forward:

 actions and interventions capable of operating transformation paths from H1 to H3.

Pre-workshop Survey

• Three basic questions which will prepare participants for the Horizon 1.

- Question 1: Share 3 key problematic/concerning trends for the area of your city.
- Question 2: Share 3 drivers of change that you think are the most relevant for exploring the present and future of your city.
- Question 3: Share 3 seeds of change that you think are the most promising for shaping the future of your city.

• Initial creative exercise for the Horizon 3: Postcards from the future

More information: Bina, O., Inch, A., Baptista, M., Pereira, M. and Falanga, R. (2**023**) Guidance for Nature Futures Workshops, Working Document (revised), EU funded project CONEXUS grant agreement no. 867564, University of Lisbon and University of Sheffield, ULisboa repository <u>http://hdl.handle.net/10451/56074</u>

Results & Discussion

"Today I notice that we have a greener and more colourful environment thanks to the tree planting and the permanent flowering of plants" Bogota

"The result of this change of trajectory in my opinion were the new social and environmental collectives that grew throughout the city, the change from public policy and planning and the spaces of co-creation and construction that were given to have citizen participation in decision making." Bogota "There are no more cars in the city centre and the public transports are superefficient with a very affordable fare. It is also possible to get around on the numerous bike paths, some passing through the green corridors of the city, which simultaneously allow the inhabitants to spend more quality time in natural "We have developed a more local and organic food production chain, with spaces of Lisbon agroforestry spaces scattered around the city, producing healthy, poison-free food in backyards and public gardens." Sao Paulo

"People are also more involved in local decision-making, with opportunities to really shape how public services work. The time for all of this has been made possible by the introduction of a universal basic income (UBI)". Lisbon

"awareness-raising and education to [consumption] renunciation, understood as degrowth (...)no longer seen as negative" raising "the awareness that the race for (...) in this projection, in which there is a less predatory relationship [with nature], progress is no longer sustainable" Jurin with respect to the environment we inhabit, this is also transferred to the bonds and relationships established among us. (...) it seems to me, the notion of care, and indeed, we realize that what surrounds us perishes, if we do not sustain a concrete care." Buenos Aires

Governance, Policy & Planning

	What needs changing (Pathways to the future) Environment			
	Renaturation of rivers			
	Giving rights to nature			
	Offer more inclusive forms of environmental education and awareness raising	Cultul	Edu	
	Changing people's habits and ways of living to overcome the climate and biodiversity crisis	al Chai	reness	Alte
	Implement radical and potentially transformative public policy initiatives (e.g., universal basic income, participatory budget)	lge	20	rnative odels
S	Training for city planners and technical staff			
oublic en space	Strategic distribution of vegetation in the city, based on diagnosis, planning and incentives			
gree	Promoting urban food initiatives and local production		Food system	Urban
	Diverse and inclusive decision-making participation		0 0	
	Creating local decision-making instances	ollab omn Ag		
	Political and economic incentives (public and private) for community-led environmental initiatives	oration, iunity & ency	oration, iunity &	

Discussions

- We cannot create greener futures without considering the broader contexts in which we imagine they will function.
- Exercising our collective imagination about desired futures allows us to step back, shape alternatives to the present, and identify detailed pathways towards them.
- Imagining and reimagine positive visions of fairer and more just requires some optimism (Sardar 2013).
- Limited opportunities to step back from dealing with immediate or urgent problems
- Exercising our capacity to co-imagine desired futures can help us strengthen our NBS communities and broader 'nature-based thinking' within it.

Mercado, G., Wild, T., Garcia, J. H., et al. (Accepted) Supporting Nature-based Solutions via Nature-based thinking, across European and Latin American cities, Ambio

Next steps

Official futures

- -Visions
- -Scales of change
- -Actors
- -Action
- -Challenges and threats

Desired futures

•What are the differences and similarities?

•Are the actions we could imagine enough to bridge the gaps between the world we feel we are heading towards and where we would really like to be?

References

- Bai, X., van der Leeuw, S., O'Brien, K., Berkhout, F., Biermann, F., Brondizio, E. S., Cudennec, C., Dearing, J., Duraiappah, A. and Glaser, M. (2016) Plausible and desirable futures in the Anthropocene: A new research agenda, Global Environmental Change, 39, 351-362.
- Bina, O., Inch, A. and Pereira, L. (2020) Beyond techno-utopia and its discontents: On the role of utopianism and speculative fiction in shaping alternatives to the smart city imaginary, *Futures*, 115, 102475.
- Elmqvist, T., Fragkias, M., Goodness, J., et al. (2013) Stewardship of the biosphere in the urban era. In: Urbanization, biodiversity and ecosystem services: Challenges and opportunities (Eds, Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P. J., McDonald, R. I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K. C. and Wilkinson, C.) Springer, 719-746.
- Inayatullah, S. (2011) City futures in transformation: Emerging issues and case studies, Futures, 43, 654-661.
- Mansur, A. V., McDonald, R. I., Güneralp, B., Kim, H., de Oliveira, J. A. P., Callaghan, C. T., Hamel, P., Kuiper, J. J., Wolff, M. and Liebelt, V. (2022) Nature futures for the urban century: Integrating multiple values into urban management, *Environmental Science & Policy*, 131, 46-56.
- McPhearson, T., Iwaniec, D. M. and Bai, X. (2016) Positive visions for guiding urban transformations toward sustainable futures, Current opinion in environmental sustainability, 22, 33-40.
- Sardar, Z. (2013). Future: All That Matters (1st ed.). Hodder & Stoughton.
- Sharpe, B., Hodgson, A., Leicester, G., Lyon, A. and Fazey, I. (2016) Three horizons: a pathways practice for transformation, *Ecology and Society*, 21.

My LinkedIn profile

Mariana Dias Baptista | The University of Sheffield

Research Associate

CONEXUS

Funded by the European Union

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Trees as Infrastructure

Driving investment in urban NbS - interim learnings from our case study in Glasgow, UK

Presented by Chloe Treger Co-lead TreesAl Pilots Dark Matter Labs

- CONTEXT TREESAI APPROACH LEARNINGS Automation and

NEXT STEPS

Nature as adaptation

Organisations are facing climaterelated risks affecting their financial operations.

Street Trees

Lenders

(Re)Insurance

Local Authorities

Large Property Owners

These risks include various transition (e.g. new PRA regulation on disclosing risks) and physical risks (e.g. heavy rainfall causing repeated surface water flooding.) Typically, the mitigation of climate risk is managed using financial hedging products (such as insurance solutions) or grey infrastructure. But the ongoing climate volatility will lead to escalating costs, carbon- intensive adaptation investments and ultimately uninsurability.

Public and Private Organisations will need to adapt.

Part of a risk mitigation strategy is investments in Nature- based Solutions (NbS) that help to mitigate climate risks, reducing and preventing exposure. CAN REDUCE PEAK SUMMER TEMPERATURE BETWEEN CAN REDUCE 1- 5 PEAK RAIN FLOW BY 40%

Crime decrease **Community enhancement** Improved attention & focus Lower noise levels **Reduce Inactivity &** obesity Reduced time in hospital Improving mental wellbeing Improve visitor spend Job creation **Biodiversity** €40 Land value uplift €9 Air quality €18 Energy savings €3 Reduce medical incidents €15 Reduce road repair costs €5 Reduce water treatment costs **Carbon sequestration**

The Challenge

Desirability Confidence in NbS

- a. Locational information lack of data and modelling of locationally calibrated NbS
- b. Lack of long- term benefits valuation and infrastructure
- c. Lack of data- sharing protocols & proprietary modelling

- a. Lack of space
- b. Small scale of projects
- c. Small market/Limited number of contractors
- d. Unfamiliarity with capex and opex (maintenance) costs
- e. High levels of tree death

Viability Collaboration

- a. Inter- organisational challenges (e.g. siloed departments)
- b. Misalignment of bureaucratic processes
- c. Complex ownership requiring collaborative delivery
- d. Lack of standards

A Solution: TreesAl

A cloud- based open source platform which aims to revalue nature from a liability to an asset to drive investment into our collective resilience

Scenario impact models for informed decision- making

Civic Engagement & match- making for delivery of just portfolios

Developing new funding structures for collective investment

SUPPORTED BY:

National Trust

0.4

TreesAl Glasgow Pilot

Aim: To fund a portfolio of Nature- based Solutions projects in Glasgow and the Clyde Valley.

Desirability Embedding open source scenario modelling into flood- risk models to calculate risk- reduction (partnership with IBM/ STFC)

Feasibility Portfolio- based strategy with multiple projects and developers, with preagreed maintenance schedules.

3

1200

2

Viability Bringing in blended finance to support the planting and growing of urban nature- based solutions

Desirability

Location Based Scoring: Where to locate NBS to maximise benefits?

Desirability: Scenario- modelling

Scenario Data Visualization modelling Find out more: www.greenurbanscenarios.com 🚳 gus Docs . Home Edit on gus Scenario Builder Search docs Build a stenario based on the existing trees in this city and see the ecosystem benefits of your scenario. License Apache 2.0 gypl package 2.0.6 python 3.5 [3.9] 3.10 3. Home gus Import your own file and encountermark ∈ 5rc SIRN IN Index. . Get the simulation working with your own date, new file types, a supported. ⊖Gus Green Urban Scenarios ES P. Agents Aliometrics Green Urban Scenarios - A digital twin representation, simulation of urban forests and their impact Number of Trees Number of Trees Index. analysis. Machala Density How many numbers of trees: Installation Utilities . Operation Species 100 1000 Weather Install GUS from PvPI: 🔆 Diseases Impacts 🜔 Weather Cerbon \$ pip install pyGus--0.1.9 Tree density Index 🏯 Ground Water You can use, Poetry as well: How dense, tie you want the trees to ke? Af Maintenance ③ Timeframe \$ poetry add pyGus Leas density More tiensity Development Tree species Create a virtualenv by using pyenv, install it first: The most common species in Amsterdam are Everyreen and Deciduous. Below, choose the \$ brew install readline xz percentage of Evergreen trees out of total trees: \$ brew install pyenv pyenv-wirtualenv 50 Add those to your withashre or withzahre (or any profiler you use) 50% Evergreen 50% Decidurus Evergreen eval "\$(pyenv init -)"
eval "\$(pyenv virtualenv-init -)" Contagious diseases Next + Install a specific ovthon version:

Desirability: Impact Functions

山

assets

hazard client data

••••

assets + hazard

assets + hazard + impact

impact functions OR cost per asset

report

hazard cost

in blue are custom user inputs

Feasibility: Community- based portfolios

Viability: Pilot Partnership

FIND OUT MORE

Our<u>initial blog</u>, which laid out our concept of an open source model to support municipalities in transitioning toward resilient urban forest management practices, and our<u>strategy document</u>, which provides more detail.

Our<u>interim learning report</u> provides an analysis of how we can overcome existing structural challenges to reach investment readiness for the long- term stewardship of Nature- based Solutions in cities.

DRAFT: TreesAl Glasgow Pilot Learning report

Quick Links

TABLE OF CONTENTS

- 1. Context
 - a. Introduction to TreesAl
 - b. Portfolio Building as a Process
- 2. Methodology
 - a. Overview
 - b. Step I: Understand risks
 - c. Step II: Define NbS
- d. Step III: Estimate impact
- 3. Learnings from Glasgow
 - a. Overall Learnings
- Resources

Overview

TreesAl provides a series of tools to help establish nature as a critical, and Investable, part of urban infrastructure. Over the past two years, we've been building the TreesAl Pilot in Glasgow, Scotland.

Glasgow faces a series of interconnected social, environmental and economic challenges. The city is eager to explore a series of nature-based solutions, but is looking to overhaul NbS financing; shifting from sporadic cash injections towards a robust funding model.

By connecting green investors to existing or potential projects, helping the city to better map and measure the impact of the projects, and encouraging citizens to participate in the co-creation of a more liveable Glasgow, we're helping the city to meet its ambitious green infrastructural goals.

The report largely focuses on lessons and learnings from our work so far. So if you want to get into the details of our experience in Glasgow, click <u>here</u>.

We're entering conversations with cities across the world. While every municipality

APPENDIX

LBS Location- based Scoring

TreesAL

Where to locate NBS as a climate adaptation strategy and to maximise benefits to the city?

- Cooling effect
- Flood Alleviation
- Improved air quality
- Improved noise pollution
- many more

CAREFULLY POSITIONED TREES CAN REDUCE A HOME'S ENERGY COST BY Location criteria helps prioritise projects to mitigate targeted risks through weighting formulas.

Location- based scoring developed using the <u>IVAVIA</u> <u>framework</u> (Resin, 2018) and the <u>IPCC's Fifth Assessment</u> <u>Report</u>.

Spatial indicators of climaterelated risks of a given landscape.

Impact Chain	Data Management	Score Calculation	Overlay with GUS	Data Visualization	
Qualitative Risk Assessment	Data collection and geoprocessing	LBS Model (data normalization, weighting of indicators and aggregation)	Risk score map is compared to GUS impact assessments of the current canopy structure	Maps, sankey diagrams, and charts	

LBS - Impact Chain

Climate Risk is understood as the result from the interaction of vulnerability, exposure, and hazard

LBS - Data Management

233-255

1025 -

Data collection and geoprocessin g

952. 255

LBS - Score Calculation

LBS for Heat Risk

LBS - Overlay with GUS

Location of

LBS Model -Heat Risk LBS

Street, park and private land trees

GUS Cooling Potential Model -

Cooling Effect of Trees in 10

Indicate areas in the city where there is a high risk of heat stress and low cooling effect from trees to support in the decision- making of planting new trees for heat stress alleviation

IBM Research

TreesAl Impact Work Package

Katharina Reusch

. 2

Open Street Map (OSM) Data Extraction

=> show for any bounding box the buildings, landuse, natural land and roadnetwork

= > For TreesAl use case: show trees per bounding box

<u>--</u>

Flood Data

=> showcasing different flood data availability

= > CLIMADA global dataset
= > SEPA: Scottish Environment
Flood Maps
= > GUS: TreesAl Project
Floodmaps

۲

OSM - Flood Overlay

= > overlay of flood data (raster or shapefile) with OSM data

0

TreesAl Cost Calculations

= > estimating costs based on literature for flood damage at different depths Ð

Fragility Impact Function

= > calculating building fragility probabilities for 4 fragility categories for Glasgowarea чC

Other Impact Assessments

= > How to scale impact assessments globally

Overall Impact Workflow

as created for TreesAI project but available for any area as multiple workflows in GeoDN (soon)

Open Street Map Data Extraction

Open Street Map Data Extraction - Glasgow

- OSM Python API allows to pull categories such as builings, landuse, natural land, highways, road etc <u>https://wiki.openstreetmap.org/wiki/M</u> <u>ap_features</u>
- For example for buildings, they are put into categories such as houses, commercial, religious buildings <u>https://wiki.openstreetmap.org/wiki/Ke</u> <u>y:building</u>
- Run for Glasgow City, see image

OSM Data

69

OSM Example Glasgow

infrastructure

101

õ

.....

fell -

grassland

heath

scrub -

tree

wood

bay

beach

mud

shingle -

spring

water

wetland -

cliff

hill -

peak -

rock -

sand -

scree -

stone -

bare_rock

earth_bank -

cave_entrance

coastline

tag_item

shrubbery -

tree row

ế ể ể ể conut

ROADS

Ξ

OSM Workflow also has trees itself – total 84k in Glasgow

Flood Data

Note: With shapefiles of the actual flood extents, it is easier to pick out all buildings actually affected by a flood.

For Rasterfiles of for example 1km resolution, all assets in that area are listed and they are probably not all affected in the same way; additionally raster files average over a region and usually have much lower flood depths in meters than shopefiles with actual flood extents and depths

SEPA Flood extent and depth (10m)

TreesAl Project GUS model (10m)

CLIMADA River Flood Climate Scenario (5km)

• Trying out Climada Library

• RCP85 for year 2030 to 2050:

• Flood Hazards available for various climate scenarios

'res_arcsec': ['150'], 'climate_scenario': ['rcp26', 'rcp85', 'historical','rcp60'] 'year_range': ['2010_2030', '2030_2050', '2050_2070', '2070_2090', '1980_2000'] 'spatial_coverage': ['country']

• For Glasgow example, downloaded climate scenario rcp85 =>This high-emissions scenario is frequently referred to as "business as usual" if society does not make changes

RCP26 (global temp rise below 2 degrees) for year 2030 to

GUS model Glasgow

GUS = Growth Urban Scenario https://lucidmindsai.medium.com/green-urbanscenarios-298d75b100b4

Flood extent and depths

STAMPERLAND

Clarkston

Shapefile with flood extents and depths

SEPA Flood Map

OSM with Flood Overlay

How to?

- The flood hazard is then converted into a dataframe with a location and flood depth
- This is then overlayed with the polygons from OpenStreetMap

Flood Intensity in meters

Building Polygons Categorised

.... 121

122

123

124

125

archtype

Processing Pipeline

	longitude	latitude	depth			depth		geon
0	-4.458333	56.000000	0.000000		0	0.000000	POLYG	ON ((-4.43750 56.02083, -4.43750 55.97
1	-4 458333	55 958333	0.000000		1	0.000000	POLYG	ON ((-4.43750 55.97917, -4.43750 55.937
2	4.450000	55.000000	0.000000	Convort point	2	0.000000	POLYGO	ON ((-4.43750 55.93750, -4.43760 55.895
-	4.450000	55.516657	0.000000	data into mini	3	0.000000	POLYG	ON ((-4.43750 55.89583, -4.43750 55.85
0	-4.408233	56.875000	0.000000	polygons	4	0.000000	POLYG	ON ((-4.43750 55.85417, -4.43750 55.812
4	-4.458333	55.833333	0.000000	p = 17 g = 11				
•••					121	0.000000	POLYC	ON ((-3.89583 55.85417, -3.89583 55.812
21	-3.916667	55.833333	0.000000		122	0.032686	POLYGO	ON ((-3.89583 55.81250, -3.89583 55.770
22	-3.916867	55.791667	0.032686		123	0.032686	POLYG	ON ((-3.89583 55.77083, -3.89583 55.72
23	-3.916667	55.750000	0.032686		124	0.000000	POLYG	ON ((-3.89583 55.72917, -3.89583 55.687
24	-3.916667	55.708333	0.000000		125	0.000000	POLYGO	N ((-3.89583 55 68750 -3.89583 55 645
25	-3.916667	55.868667	0.000000		JOIN			↓ I
type			ge	ometry				•
AL-			_					
F14	POLYGON ((-	4.29466 55.886	97, -4.29435 55.8	8695		archtype	depth	
F14 F14	POLYGON ((- POLYGON ((-	4.29466 55.889	97, -4.29435 55.8 57, -4.29858 55.8	8695 \$258		archtype 0 F14	depth 0.0	POLYGON ((-4.29466 55.88897, -4.29436 5
F14 F14 F14	POLYGON ((- POLYGON ((- POLYGON)	4.29466 55.889 4.29883 55.892 ((-4.28612 55.87)	97, -4.29435 55.8 57, -4.29858 55.8 517, -4.28588 55.8	8695 19258 87511		archtype 0 F14 1 F14	depth 0.0 0.0	POLYGON ((-4.29486 55.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5
F14 F14 F14 F14 F14	POLYGON ((- POLYGON () POLYGON () POLYGON ()	4.29466 55.889 4.29883 55.892 ((-4.28612 55.87) -4.28482 55.873	97, -4.29435 55.8 57, -4.29858 55.8 517, -4.29588 55.8 517, -4.28589 55.8 10, -4.28470 55.8	8696 19258 87511 17326		archtype 0 F14 1 F14 2 F14	depth 0.0 0.0 0.0	POLYGON ((-4.29486 55.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29688 5 POLYGON ((-4.28672 55.87517, -4.28588 5
F14 F14 F14 F14 F14 F14	POLYGON ((- POLYGON () POLYGON () POLYGON ()	4.29466 55.899 4.29883 55.892 (-4.28612 55.873 -4.28482 55.873 -4.28407 55.856	97, -4.29435 55.8 57, -4.29858 55.8 517, -4.29588 55.8 517, -4.28588 55.8 10, -4.28470 55.8 41, -4.28274 55.8	8696 89288 87511 5652		archtype 0 F14 1 F14 2 F14 3 F14	depth 0.0 0.0 0.0 0.0	POLYGON ((-4.29486 55.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29688 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87510, -4.28470 5
F14 F14 F14 F14 F14 F14 F14 F14	POLYGON ((- POLYGON () POLYGON () POLYGON () POLYGON ()	4.29466 56.896 4.29833 55.892 (-4.28612 55.87) -4.28482 55.873 -4.28407 55.856 -4.31575 55.853	97, -4.29436 55.8 57, -4.29858 55.8 517, -4.28588 55.8 510, -4.285470 55.8 41, -4.28274 55.8 281, -4.31550 55.8	8895 87511 75266		archtype 0 F14 1 F14 2 F14 3 F14 4 F14	depth 0.0 0.0 0.0 0.0 0.0	POLYGON ((-4.29486 55.88697, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87510, -4.28470 5 POLYGON ((-4.28407 55.85641, -4.28274 5
F14 F14 F14 F14 F14 F14 F14 F14 F5 F5	POLYGON ((POLYGON () POLYGON () POLYGON () POLYGON () POLYGON ()	4.29466 56.899 4.2983 55.892 4.28612 55.873 -4.28482 55.873 -4.28407 55.856 (-4.31575 55.852 4.36819 55.8451	97, -4.29485 55.8 57, -4.29858 55.8 517, -4.29588 55.8 517, -4.29588 55.8 10, -4.29470 55.8 41, -4.29274 55.8 281, -4.31553 55.8 56, -4.35807 55.8	8896 9751 77326 55261 4566	9,500	archtype 0 F14 1 F14 2 F14 3 F14 4 F14 	depth 0.0 0.0 0.0 0.0 0.0 0.0	POLYGON ((-4.29486 55.88697, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87510, -4.28470 5 POLYGON ((-4.28407 55.85641, -4.28274 5
F14 F14 F14 F14 F14 F14 F5 F5 F5 F5	POLYGON ((- POLYGON (- POLYGON () POLYGON () POLYGON () POLYGON () POLYGON ()	4.29466 56.899 4.29893 55.892 4.28612 55.873 -4.28482 55.873 -4.28407 55.856 (-4.31575 55.852 4.35819 55.8454 4.35860 55.8454	97, -4.29485 55.8 57, -4.29858 55.8 517, -4.29858 55.8 517, -4.285470 55.8 41, -4.28274 55.8 281, -4.31553 55.8 558, -4.35507 55.8	8896 97518 97517 97526 955261 45566 4552	3632	archtype 0 F14 1 F14 2 F14 3 F14 4 F14 0 F6 2 F6	depth 0.0 0.0 0.0 0.0 0.0 0.0	POLYGON ((-4.29486 56.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87510, -4.28470 5 POLYGON ((-4.28407 55.85641, -4.28274 5 POLYGON ((-4.31678 56.85281, -4.31650 5 POLYGON ((-4.31678 56.85281, -4.31650 5
F14 F14 F14 F14 F14 F14 F14 F15 F5 F5 F5 F5	POLYGON ((POLYGON () POLYGON () POLYGON () POLYGON () POLYGON () POLYGON () POLYGON ()	4.29468 55.899 4.29883 55.892 4.28482 55.873 -4.28407 55.856 (-4.31575 55.852 4.36819 55.8454 4.36819 55.8454 (-4.35331 55.810	97, -4.29485 55.8 57, -4.29685 55.8 517, -4.29589 55.8 517, -4.29589 55.8 517, -4.29529 55.8 41, -4.295274 55.8 281, -4.31553 55.8 568, -4.35637 55.8 99, -4.35642 55.8 37, -4.3563 55.8	8896 9751 17326 155261 155261 155261 1656 1656 1659	3632 3633	archtype 0 F14 1 F14 2 F14 3 F14 4 F14 4 F14 0 F6 21 F5	depth 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	POLYGON ((-4.29486 56.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87517, -4.28587 5 POLYGON ((-4.28487 55.85641, -4.28274 5 POLYGON ((-4.31678 56.85281, -4.31650 5 POLYGON ((-4.31678 56.85281, -4.31650 5 POLYGON ((-4.31678 55.84556, -4.35807 5) POLYGON ((-4.35819 55.84556, -4.35807 5)
F14 F14 F14 F14 F14 F14 F5 F6 F6 F6 F6 F6	POLYGON ((POLYGON () POLYGON () POLYGON () POLYGON () POLYGON () POLYGON () POLYGON ()	4.29466 55.899 4.29883 55.892 (-4.286 2 55.87 4.28482 55.87 -4.28402 55.85 (-4.31575 55.85 4.35818 55.85 4.35818 55.85 4.35818 55.845 (-4.35331 55.810 -4.24363 55.837	97, -4.29485 55.8 57, -4.29685 55.8 517, -4.29589 55.8 517, -4.29589 55.8 517, -4.29524 55.8 281, -4.31553 55.8 568, -4.35637 55.8 39, -4.35639 55.8 39, -4.35639 55.8 54, -4.24346 55.8	88965 87511 173266 155261 155261 155261 155261 1069 13779	3632 3633 3633 3633	archtype 0 F14 1 F14 2 F14 3 F14 4 F14 4 F14 0 F6 21 F5 22 F5 3 F6	depth 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	POLYGON ((-4.29486 56.88897, -4.29436 5 POLYGON ((-4.29683 55.89257, -4.29858 5 POLYGON ((-4.28672 55.87517, -4.28588 5 POLYGON ((-4.28482 55.87510, -4.28470 5 POLYGON ((-4.28482 55.87510, -4.28470 5 POLYGON ((-4.28407 55.85641, -4.28274 5 POLYGON ((-4.31678 56.85281, -4.31650 5 POLYGON ((-4.31678 55.84556, -4.31650 5 POLYGON ((-4.31631 55.84556, -4.35607 5 POLYGON ((-4.35643 55.84554), -4.35649 5 POLYGON ((-4.35643 55.84554), -4.35649 5

GUS model Glasgow

Overlay flood extents with affected buildings

	btype	binned	count
0	apartments	0.02	336
1	apartments	0.04	18
2	apartments	0.06	17
з	apartments	0.08	8
4	church	0.02	18
5	house	0.02	30
6	industrial	0.02	50
7	office	0.02	21
8	residential	0.02	68
9	school	0.02	189
10	school	0.04	1
11	school	0.06	4
12	school	0.08	2
13	school	0.12	2
14	semidetached_house	0.02	11
15	shed	0.02	5

GUS model Glasgow

Frequency of buildings affected by floods and the relevant depth

Note: This is only a subregion of Glasgow where GUS model ran, this does not represent all Glasgow buildings.

Note: There are multiple school buildings, but probably one school itself affected. It depends how OpenStreetMaps maps buildings

Using Climada Data

All of Glasgow covered

Overlay flood raster all data and show breakdown of affected assets and areas based on flood depth (in meters)

Flood Data: flood hazard = client.get_hazard(hazard type= "tiver_flood", properties= { "country_name": "United Kingdom", "climate_scenario": "troßs", "year_range": "2030_2050",

(ISIMIP, https://data.isimip.org/

Assets affected by floods Glasgow

Fragility Impact Function

Re-categorise of Glasgow

• For IBM Impact example all buildings were recategorized into 15 different building types, each having its own fragility function based on building ype

Figure 4. Schematic representation of using minimum building archetypes portfolio to model a community.

- F1: One-story single-family residential building on a crawlspace foundation.
- · F2: One-story multi-family residential building on a slab-on-grade foundation.
- F3: Two-story single-family residential building on a crawlspace foundation.
- F4: Two-story multi-family residential building on a slab-on-grade foundation.
- F5: Small grocery store/Gas station with a convenience store.
- F6: Multi-unit retail building (strip mall).
- F7: Small multi-unit commercial building.
- F8: Super retail center.
- F9: Industrial building.
- F10: One-story school.
- F11: Two-story school.
- F12: Hospital/Clinic.
- F13: Community center (place of worship).
- F14: Office building.
- F15: Warehouse (small/large box).

""'Flood impact function.

flood_depth: water surface elevation in meters. first_floor_elevation: the building's first floor elevation in meters. name: the name of the function.

Damage state goes from DS0 to DS4.

- DS0: Insignificant damage to components below first-floor elevation. Water enters crawlspace/basement and touches foundation (crawlspace or slab on grade). Damage to components within the crawlspace/basement including base insulation and stored inventory. Minor damage to garage interiors including drywall, cabinets, electrical outlets, wall insulation (Garage is below the first-flood elevation (FFE)). No sewer backup into the living area.

- DS1: Water touches floor joists up to minor water entering the building. Damage to carpets, pads, baseboards, flooring. Damage to the external AC unit (if the AC unit is not elevated) and the attached ductworks (if ductworks are in the crawlspace). Complete damage to the garage interior (if the garage is below FFE). No drywall damages with the potential of some mold on the subfloor above the crawlspace. Could have a minor sewer backup and/or minor mold issue.

- DS2: Partial damage to drywalls along with damage to electrical components (base-outlets), water heater, and furnace. Complete damage to major equipment, appliances, and furniture on the first floor. Damage to the lower bathroom and kitchen cabinets. Doors and windows may need replacement. Could have a major sewer backup and major mold issues.

- DS3: Damage to the non-structural components and interiors within the whole building including (but not limited to) drywall damage to upper stories for multi-story buildings (e.g., attic, second story, etc.). Electrical switches and mid-outlets are destroyed. Damage to bathroom/kitchen upper cabinets, lighting fixtures on walls are destroyed with potential damage to ceiling lighting fixtures. Studs reusable; some may be damaged. Major sewer backup will happen along with major mold issues. Equipment, appliances, and furniture on the upper floors are also damaged (e.g., attic, second floor, etc.).

- DS4: Significant structural damage present (e.g., studs, trusses, joists, etc.). Non-structural components and interiors are destroyed including all drywall, appliances, cabinets, furniture, etc. Damage to rooftop units/components including roof insulation, sheathing, and electro-mechanical systems (rooftop AC units, electrical systems, cable railing, sound system, etc.). Foundation could be floated off. The building must be demolished or potentially replaced.

Fragility Impact Calculation

Used: OSM Buildings Glasgow Flood: SEPA Flood model (due to more and higher flood values than GUS output which only had a max flood depth of 12cm when overlayed with buildings **DS1:** Water touches floor joists up to minor water entering the building.

DS2: Partial damage to drywalls along with damage to electrical components

DS3: Damage to the non-structural components and interiors within the whole building

DS4: Significant structural damage present (e.g., studs, trusses, joists)

Illustration for one building – flood depth 0.3m

DS4 for all buildings

Illustration for one building flood depth 1.2m

Glasgow City Region Impact Map

- based on forecasted CLIMADA river flood depth (in meters) for 2030-2050
- Impact function calculated on the 15 building types specified before
- 4 different damage categories based on first floor levels and estimated impact for those
- Left is an example of Damage State 1 (DS1) probability for each building in Glasgow

- 0.8

- 0.4

TreesAl Building Cost Calculations

https://docs.google.com/document/d/1QI9 WVJEdn5iWMZ1IqY-BmmTulbbGvTcZo4ITsIt51cc/edit#heading=h.j 7gxg8nzwnm3

Table 4.17 Weighted annual average damage calculations: residential property with no protection (where <0.1m = all sector residential damage figures at 0.05m – Appendix 4.1).

Species M % Optimize Optimize 0										Flood frequency	Distribution of flood depths Damag		Damage (£)	Weighted							
5 years -0.1																		M	%		damage (£)
1 1 1 1 1 22,687 3,046 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 years</td><td><0.1</td><td>81</td><td>10,973</td><td>8,888</td></t<>																	5 years	<0.1	81	10,973	8,888
1 0 1 27.67 3.04 0																		0.1-0.3	7	23,290	1,630
No Retail - Fluvial Short 0																		0.3-0.6	11	27,687	3,046
Retail - Fluvial Short 0 32,63 0 10 0 0 32,63 0 10 0 0 32,64 0 33,64 10,85 0 10,98 10,983 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.6-0.9</td><td>1</td><td>30,267</td><td>303</td></t<>																		0.6-0.9	1	30,267	303
1 1							Reta	ail - Elu	vial Sh	ort								0.9-1.2	0	32,153	0
Image: constraint of the constrai									that st								-	>1.2	0	33,040	0
 																				Total weighted damage	13,867
1 1							Enter total	value (E) from	the Questio	nnaire (Ch5.	AR1) for eac	h component:					10 years	<0.1	50	12,783	6,391
1 1										_		-					-	0.1-0.3	31	26,075	8,083
i i					Select NRP	Select	Building	Building	Fixtures and		Moveable							0.3-0.6	10	30,762	3,076
1 0					Sector	Scenario	structure	services	fittings	Clean up	Equipment	Stock						0.6-0.9	6	33,108	1,986
Internal minutal short 1.000 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2.00 5.00 2							and febric											0.9-1.2	2	34,895	698
Image: constraint of the constraint					Retail	duvial Short	1000	500	200	50	10	200						>1.2	1	35,669	357
25 years 40.1 45 12,783 5,752 0.0 0.25 0.00 0.25 0.50 0.55 0.50 0.50					-	<u> </u>														Total weighted damage	20,592
1000 1000000 000000 00000 00000 00000 00000 0000							_										25 years	<0.1	45	12,783	5,752
101 0.75 0.50 0.25 0.00 0.25 0.50 0.50 0.25 0.50							F	LOOD DAMA	SE POTENTIA	LESTIMATE	\$						-	0.1-0.3	24	26,075	6,258
1.00 0.00 <th< td=""><td>-1.00</td><td>-0.75</td><td>-0.50</td><td>.0.25</td><td>0.00</td><td>0.35</td><td>0.50</td><td>0.75</td><td>1.00</td><td>4.95</td><td>1 50</td><td>4.75</td><td>2.00</td><td>2.00</td><td>1 50</td><td>175 9.00</td><td></td><td>0.3-0.6</td><td>22</td><td>30,762</td><td>6,768</td></th<>	-1.00	-0.75	-0.50	.0.25	0.00	0.35	0.50	0.75	1.00	4.95	1 50	4.75	2.00	2.00	1 50	175 9.00		0.3-0.6	22	30,762	6,768
13.84 19.04 20.46 22.19 63.39 276.75 428.87 586.48 740.25 859.64 964.77 1,025.57 1,225.85 1,325.00 1,491.42 1,475.78 1.2 1 36.60 1.2 1 36.60 37.72 1.2 1 32.6 1,600.60 1.600.60 1.600.60 20.06 20.06 20.06 20.06 20.06 20.06 20.06 20.06 20.07 1,600.60 1.366.00 7.72 3.8637 7.106 32.0 2.8637 7.549 0.9.12 4 33.837 7.549 0.9.12 4 33.629 1,149 0.9.12 4 35.649 7.549 <td>-1.00</td> <td>-047.3</td> <td>-0.30</td> <td>-023</td> <td>0.00</td> <td>0.23</td> <td>0.30</td> <td>0.73</td> <td>1.00</td> <td>1.2.5</td> <td>1.50</td> <td>1.03</td> <td>2,00</td> <td>2.2.5</td> <td>2.30</td> <td>2.73 3.00</td> <td></td> <td>0.6-0.9</td> <td>5</td> <td>33,108</td> <td>1,655</td>	-1.00	-047.3	-0.30	-023	0.00	0.23	0.30	0.73	1.00	1.2.5	1.50	1.03	2,00	2.2.5	2.30	2.73 3.00		0.6-0.9	5	33,108	1,655
Retail - Fluxial Short >1.2 1 35,669 357 S0 years <0.1 32 14,592 4,670 0.100,000 <0.000 21.2 33,837 7,108 0.000,000 <0.000 <0.000 21.2 33,837 7,108 0.000,000 <0.000 <0.000 21.2 33,837 7,108 0.000,000 <0.000 <0.000 21.2 33,837 7,108 0.000,000 <0.000 <0.000 <0.000 21.2 3 33,299 1,100 0.000 <0.000 <0.000 <0.000 <0.000 <0.000 21.2 3 33,837 7,518 0.000 <0.000 <0.000 <0.000 <0.000 <0.000 1,000 22 1,4592 3,210 0.000 <0.000 <0.000 <0.000 <0.000 21.2 12 14,592 3,210 0.000 <0.000 <0.000 <0.000 <0.000 21.2 12 35,490 3,210 0.000 <0.000 <0.000 <0.000 <0.000	13.84	19.04	20.46	22.19	63.39	276.75	428.87	586.48	740.25	859.64	964.77	1,063.57	1,225.83	1,325.00	1,397.46	1,430.42 1,475.78		0.9-1.2	4	34,895	1,396
Retail - Fluxial Short So years Col.1 Col.1 Col.2 Col.4 Col.4 <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>>1.2</td><td>1</td><td>35,669</td><td>357</td></thc<>																	-	>1.2	1	35,669	357
Retail - Fluvial Short 50 years -0.1 32 14,592 4,670 1,600.00 1,000.00 0.10.03 20 28,659 5,772 1,000.00 1,000.00 0.10.03 20 28,659 7,716 0,000.00 0.00.00 0.10.03 20 28,659 7,716 0,000.00 0.00 0.10.03 30.8 21 35,949 7,549 0,000 0.00 0.00 1.00 0.01.03 0.80,80 1,149 0,000 0.00 0.00 0.00 0.01.03 0.80,829 1,149 0,000 0.00 0.00 0.00 0.00 0.00 20,000 0.00 1,149 0,000 0.00 0.00 0.00 0.00 0.00 20,000 0.00 20,00							-			-										Total weighted damage	22,186
1,600.00 1,000.00 20 28,659 5,772 1,000.00 1,000.00 33,837 35,949 7,549 1,000.00 0,00 20 0,01 20 28,659 7,106 1,000.00 1,000.00 20 0,01 20 1,03 20 28,659 7,106 1,000.00 1,000.00 1,000.00 21 33,637 1,006 1,006 1,01 22 1,01 22 1,149 27,751 0,000 -1.00 -0.75 0.05 0.25 0.50 0.75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 22 14,592 3,210 0,1-0.3 16 28,659 4,617 0,3-0.6 26 33,837 8,798 0,6-0.9 19 0,9-1.2 12 37,638 4,517 0,9-1.2 12 37,638 4,517 >1.2 6 38,299 2,298			_				Re	etail - Flu	vial Shor	t							50 years	<0.1	32	14,592	4,670
1,400,00 1,400,00 1,200,00 1,200,00 1,200,00 21 33,837 7,106 1,200,00 800,00 600,00 90,010 21 35,949 7,549 0,00 800,00 800,00 90,010 38,299 1,149 200,00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 100 years <0.1			1	600.00 -										_			-	0.1-0.3	20	28,859	5,772
1,200,00 1,200,00 0,00,00			1	400.00													-	0.3-0.6	21	33,837	7,106
1,000.00 0,00 0,00 37,638 1,506 400.00 0,00 1,00 0,75 0,50 0,25 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0,00 100 years 0,00 0,00 14,592 3,210 0,00 -1,00 0,75 0,50 0,25 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0,00 14,592 3,210 0,00 -1,00 0,75 0,50 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0,00 14,592 3,210 0,00 -1,00 0,75 0,50 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0,00 16 28,859 4,617 0,00 -1,00 0,75 0,50 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0 0,00 10 38,949 6,830 0,00 -1,00 0,75 0,50 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 0 0 0 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td>1</td> <td>200.00</td> <td></td> <td>-</td> <td>0.6-0.9</td> <td>21</td> <td>35,949</td> <td>7,549</td>			1	200.00													-	0.6-0.9	21	35,949	7,549
→ 00.00 000 000 000 000 000 000 000 000 0			3 ¹	000.00														0.9-1.2	4	37,638	1,506
400.00 200.00 200.00 200.00 0.00 -1.00 -0.75 -0.50 0.25 0.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 0.1 22 14,592 3.210 0.1 0.1 0.3 16 28,859 4,617 0.3-0.6 26 33,837 8,798 0.6-0.9 19 35,949 6,830 0.9-1.2 12 37,638 4,517 >1.2 6 38,299 2,298			5	600.00														>1.2	3	38,299	1,149
200.00 0.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 100 years <0.1		400.00												Total weighted damage	27,751						
0.00 -1.00 -0.75 -0.50 -0.25 0.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 0.1 0.3 16 28,859 4,617 0.3 0.6 26 33,837 8,798 0.6 0.9 19 35,949 6,830 0.9 1.2 12 37,638 4,517 >1.2 6 38,299 2,298				200.00										_			100 years	<0.1	22	14,592	3,210
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 0.0 0.0 10 35,949 6,830 0 0.9-1.2 12 37,638 4,517 >1.2 6 38,299 2,298				0.00	_													0.1-0.3	16	28,859	4,617
Depth (m) 0.6-0.9 19 35,949 6,830 0.9-1.2 12 37,638 4,517 >1.2 6 38,299 2,298					-1.00 -0.75	-0.50 -0.25	0.00 0.25	0.50 0.7	5 1.00 1	.25 1.50	1.75 2.00	2.25 2.50	2.75 3.	00				0.3-0.6	26	33,837	8,798
0.9-1.2 12 37,638 4,517 >1.2 6 38,299 2,298								Depth	(m)									0.6-0.9	19	35,949	6,830
>1.2 6 38,299 2,298																		0.9-1.2	12	37,638	4,517
																	-	>1.2	6	38,299	2,298

Based on the costs, we can calculate the total cost per flood depth for Glasgow $\ensuremath{\mathsf{SEPA}}$ Flood Maps

More than 13 000 buildings affected

Costs of 308 Million in damages

Total number of buildings affected 13126

Total cost of damage based to all buildings 308307146.0

Show the number of buildings affected per flood depth

Total per flood depth – more buildings are affected by lower flood depth, so the cost is higher there

Chloe Treger | TreesAl

chloe@ darkmatterlabs.org

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

3.3. Jeff Carroll

Corning a Unicorn: Forging An Urban Wood Marketplace At Scale

Presented by Jeff Carroll CEO

Urban Wood Economy

Industry Problem

Is there enough material? 46 million tons from Cities

 Assuming a mortality rate of 2%, annual urban woody biomass loss in the U.S. = @ 46 million tons of fresh-weight merchantable wood OR 7.2 billion board feet of lumber OR 16 million cords of firewood.

 The potential value from urban wood waste ranges between \$89-\$786 million annually depending upon the product (e.g., wood chips, lumber, biochar).

Nowak, David J.; Greenfield, Eric J.; Ash, Ryan M. 2019. Annual biomass loss and potential value of urban tree waste in the United States. Urban Forestry & Urban Greening. 46: 126469. 9 p. https://doi.org/10.1016/j.ufug.2019.126469.

What if...

we could **extract** we alth from the urban wood waste stream, **capture** the carbon, and **create** jobs... sustainably?

Business Model, Impact & Opportunity

IMPACT: Reduced Waste & Increased Value of Materials

Urban and Community wood falls into two categories:

- High value / Low volume
- Low value / High volume

Both require a supply chain for economic success:

- High value material = value-add milling and processing.
- Low value material = lesser value alternative product.

Both generate revenue, create jobs, and capture carbon

IMPACT: Employment for the Marginalized

• Revenue from an urban waste creates jobs

- National (U.S.) unemployment may be low but <u>urban community rates above 20%</u>.
- An urban wood economy creates access to the larger wood industry.

OPPORTUNITY: Large Untapped Market

- High volume users want eco-friendly wood
- Demand for U&C wood grows as climate concerns grow
- Build a robust supply chain

Memphis

The land of the Delta Blues has a lot to be optimistic about.

1) Launch first biomass campus/zero-waste facility

2) Assets in place e.g. real estate, equipment, improvements, and funding

- 3) Moving material to the site
- 4) Currently hiring staff
- 5) Establishing "Good Neighbor" practices

Pittsburgh

Pittsburgh has on-going workforce development programs to provide employment pathways for individuals returning from incarceration.

- 1) Current contracts for deconstruction a job generator
- 2) Funding acquired for mill shop operation and market development

3) Planning underway for a biomass campus4) Early commitment to fund the development of a biomass campus

San Diego

UWE is looking to partner with state and federal agencies to provide feasibility studies and predevelopment work in several CA cities.

TBD

Partners

2nd World Forum on Urban Forests

Washington DC, 2023

Thank you

Jeff Carroll | Urban Wood Econom y

Capturing Carbon and Creating

Jobs

in fo@uweconomy.org

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Growing to Its Potential

The Value of Urban Nature for Communities, Investors, and the Climate

October 18, 2023

Agenda

Urban Nature: An Overlooked Investment Opportunity

Quantifying the Value of Urban Nature

Developing Innovative Financing Solutions

Urban nature has the potential to deliver global net benefits exceeding \$3T per year and cumulative net benefits of \$59T between 2023 and 2050.

To unlock those benefits, we need to invest \$135 billion in new projects per year through 2030.

This represents an overall benefit-cost ratio of 9-to-1.

As a comparison: Investing in Resilience in Lowand Middle-Income Countries

Economic Benefits: **\$4.2 Trillion**

Benefit-to-Cost Ratio: **4 to 1**

We need to invest an additional \$100 billion annually to fill the gap.

Agenda

Urban Nature: An Overlooked Investment Opportunity

Quantifying the Value of Urban Nature

Developing Innovative Financing Solutions

Nature's many benefits add up for economic value.

Total Annual Value of Benefits of Urban Nature

Source: RMI Analysis

We analyzed three opportunities for urban nature to save energy and carbon.

Reducing mechanical cooling loads and building energy use

Avoiding the embodied carbon of grey stormwater infrastructure

Encouraging more walking, biking, and public transit instead of driving

Less mechanical cooling can lower building energy use, peak demand, and energy bills.

1. Lowering building **energy use** by over 1%

Energy savings a lone pays back the cost of planting trees in 11 years

2. Decreasing buildings' **peak demand** by 1%-3% (Over 100 MW)

Enough to save over \$150 million in new power generation costs

3. Reducing household energy bills by 12%

Green stormwater infrastructure slashes embodied carbon and costs.

Using nature to manage stormwater in Ahmedabad's eastern expansion zone – projected costs and embodied carbon under three scenarios, 2050

Grey scenario includes concrete-lined lakes. Low-impact grey scenario includes lakes lined with rock and wire mesh. Green scenario includes preserved natural lakes. All scenarios assume maintaining 15% green cover in the eastern expansion zone. Maintenance emissions are minimal in comparison to construction. This excludes rehabilitation (material replacement) emissions.

Street trees support a shift away from driving to walking, biking, and transit.

Modeled added street trees in Curitiba – annual reduction of VKT and emissions, 2035-2050, relative to a business-as-usual scenario

Source: RMI Analysis

Urban nature can also be a critical tool for equity.

We will need to break historical investment patterns to address inequity in urban nature

Agenda

Urban Nature: An Overlooked Investment Opportunity

Quantifying the Value of Urban Nature

Developing Innovative Financing Solutions

Innovative financing solutions can drive investment in urban nature.

Multi-dimensional credits that go beyond carbon can unlock revenue for cities.

For more information, contact:

Julia Meisel Manager, Urban Transformation jmeisel@rmi.org

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Data-Driven Decisions with Smart Tree Inventories

Presented by Josh Behounek Davey Resource Group

Right Decision, at the Right Time, on the **Right** Tree

Technology won't replace arborists but arborists who use technology will replace arborist who do <u>not</u>.

Something, somewhere went terribly wrong

Step 1: We capture cm- accurate point cloud and automatically identify each tree.

Tree

greehill - DAVEY Resource Group

Tree

Tree

Step 2: Create a 4D Digital Tree Twin of each tree

Step 4: Arborists assess outliers

Remotely $\sim 20\%$

In field $\sim 10\%$

Smart Tree Inventory Program

Year 1	Year 2	Year 3	Year 4	Year 5
Initiate smart tree inventory	Implement information via TreeKeeper 9	Re-scan smart tree inventory	Implement information via TreeKeeper 9	Re-scan smart tree inventory
Perform outlier advanced assessments	Tree height 231 m	Perform outlier advanced assessments		Performoutlier advanced assessments
Install TreeKeeper	Crown width TAL TO	Perform change analysis		Perform change analysis
	First bifurcation 7.1 m	Update TreeKeeper		Update TreeKeeper 9
	Diameter at breast height 0.58 m		♥ 2016 ♥ ● ♥ 2020 ●	

Cohort: 16" Ash Trees ± 2"

Maple, Sugar at 131 Columbus St

0 Work Records

Show Work Records by Status

Requested Scheduled Completed

dd Work

No work records found for this location.

Work							
Work Species naple, sugar (Acer saccharum) Condition Poor		DBH 26					
Work Record							
	Load Last W	/ork Record					
Project * Required		Work Type * Required					
Select	•	Select *					
Priority * Required Select Status: New Work Record	•	Requested Date					
R 🖍 S 📰	C 🖾 🛛 🛇	05/31/2023					
New Status: Requested							
Scheduled Date		Completed Date					
mm/dd/yyyy		mm/dd/yyyy					
			,				

┛

Objective Repeatable

- . Efficient
- . Precise

Thank you

Josh Behounek | Davey Resource Group

+ 1 573- 673- 7530

Josh.Behounek@ davey.com

CEU ISA

PP-23-3571

World Forum on Urban Forests

CEUS

Session 3.3: Wall-E: Promoting innovation, new technologies and future visions on the role of urban forests and trees to address climate change