

Session 3.2

Do the right thing: Planning, designing and managing the urban forest to strengthen its resilience to external shocks.

Chair: Livia Shamir

World Forum on Urban Forests

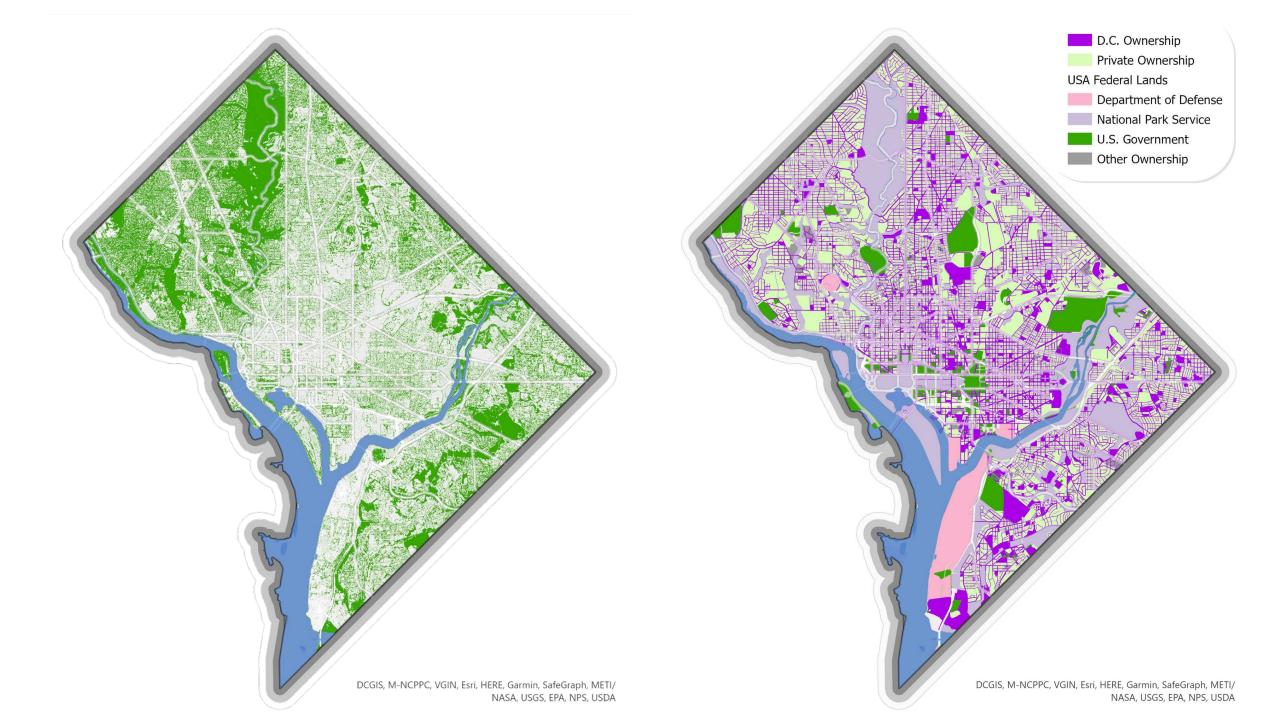
Session 3.2: Do the right thing

Look up: Shifting the urban forest composition in Washington, DC to enhance climate resilience

Presented by

Kasey Maria Yturralde, PhD Urban and Community Forestry US Forest Service

Presenting on behalf of
Urban Forestry Division
District Department of Transportation



District of Columbia 40% urban tree canopy cover by 2032

- Direct management
 - -Trees on city property
 - -Public space permits
 - -Emergency response
- Indirect management
 - -Tree ordinance
- Partnerships

0% - 15% 16% - 25% 26% - 35% 36% - 45% 46% - 100%

Benefits of Urban Forests in a Changing Climate

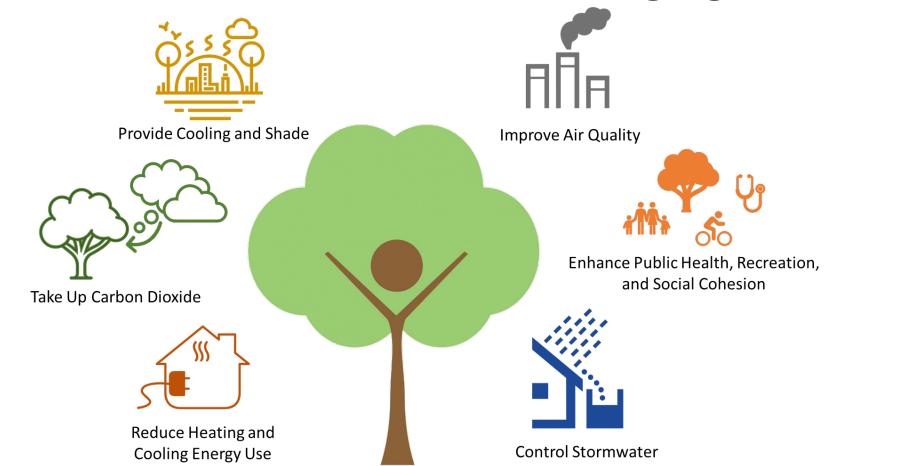


Figure adapted from Northern Institute of Applied Climate Science

Climate change and urban trees

- Direct impacts
 - -Drought
 - -Extreme heat
 - -Extreme weather events
- Indirect impacts
 - –Shifts in insect range and phenology
- Response of trees
 - -Changes in phenology
 - -Change in growth rates

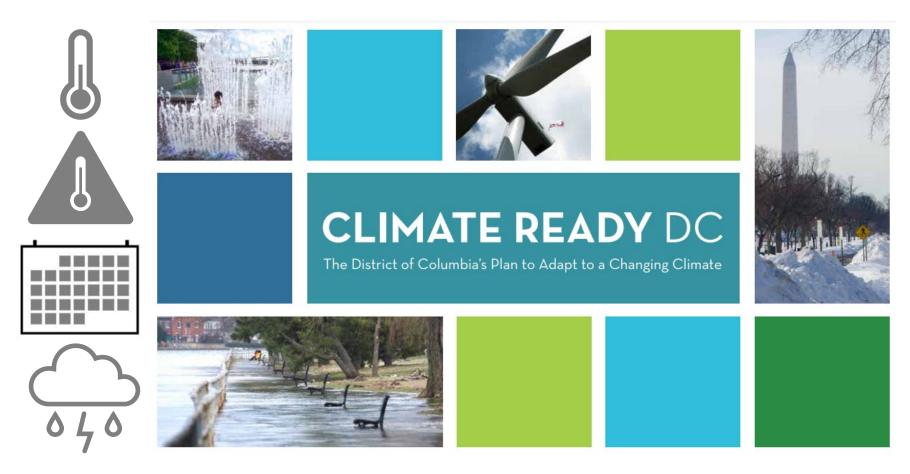
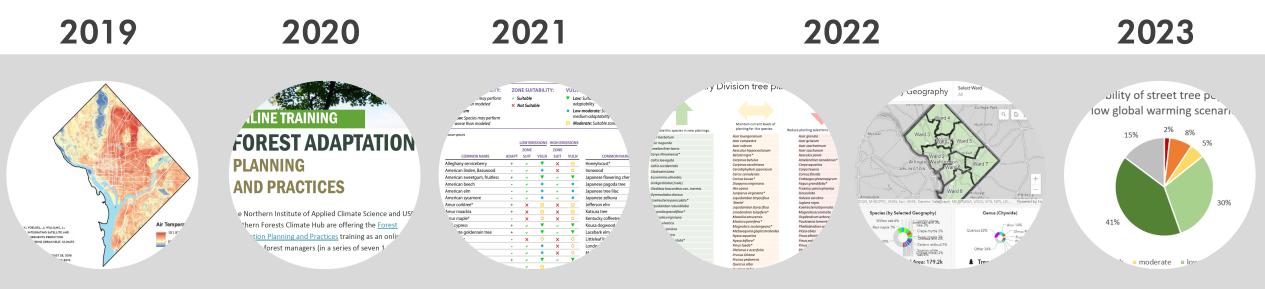

Photo: District Department of Transportation

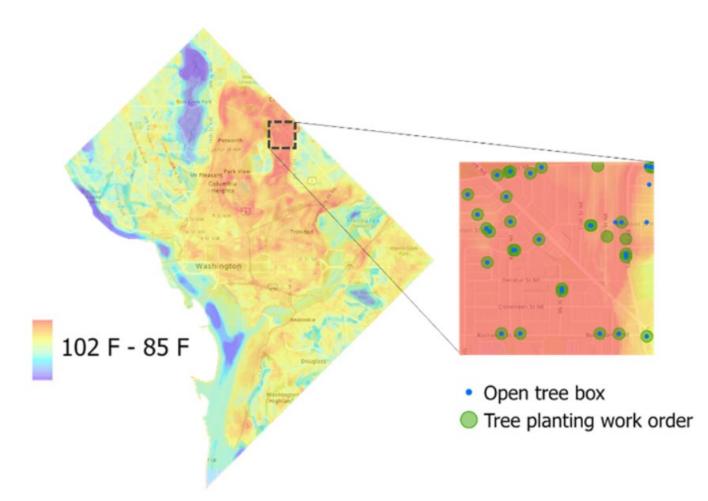
Photo: Dr David Ellsworth, Western Sydney University



Climate change in the District of Columbia

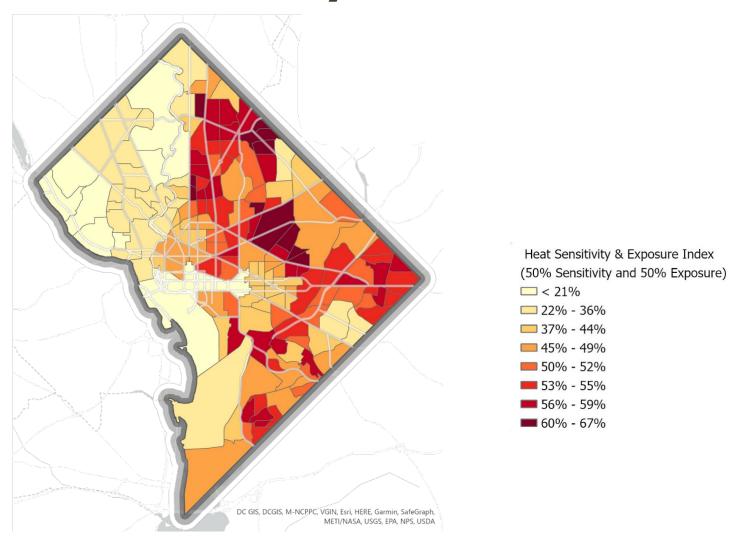
Climate change and urban forest management in the District

Urban heat mapping


Assessing climate vulnerability and adaptation planning

Prioritizing Decision tree species support tool: implementation

Evaluating progress


Planting trees where they are needed most

Shandas, V., Voelkel, J., Williams, J., Hoffman, J., 2019. Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate 7, 5.

Planting trees where they are needed most

Keep Cool DC 2022, District Department of Energy & Environment

Assessing climate vulnerability: what is at risk?

CLIMATE CHANGE VULNERABILITY OF URBAN TREES WASHINGTON, D.C.

This list was developed to aid Washington, D.C. community forestry practitioners in selecting trees to reduce climate change vulnerability of their urban forests. It is meant to be a complement to other tree selection resources. Other factors may also need to be considered, such as aesthetics, local site conditions, wildlife value, or nursery availability. It is also important to note that some species may have climate benefits but may not be suitable for planting for other reasons, such as having invasive potential or susceptibility to pests or pathogens.

Vulnerability: Trees can be vulnerable to a variety of climate-related stressors such as intense heat, drought, flooding, and changing pest and disease patterns. Climate vulnerability is a function of the impacts of

climate change on a species and its adaptive capacity. Species with negative impacts on habitat suitability and low adaptive capacity will have high vulnerability and vice versa. The following factors were used to determine climate vulnerability:

Urban adaptability: Adaptability scores were generated for each species based on literature describing its tolerance to disturbances such as drought, flooding, pests, and disease, as well as its growth requirements such as shade tolerance, soil needs, and ease of nursery propagation. Scores were assigned to species using methods developed in an urban forest vulnerability assessment for Chicago for trees planted in developed sites. A positive score indicates that a species is tolerant to a wide range of disturbances and/or is limited to species. A negative score indicates a species is highly susceptible to disturbances and/or is limited to specific planting sites.

Hardiness and heat zone suitability: Tree species ranges were recorded from government, university, and arboretum websites. Species tolerance ranges were compared to current and projected heat and hardiness zones for Washington, D.C. using downscaled climate models under low emissions (RCP 4.5) and high emissions (RCP 8.5) scenarios for changes in greenhouse gases. Trees were considered to have suitable zone suitability if the species' tolerance was within the range of current and projected hardiness and heat zone through the end of the 21st century.

NOTE: This list was primarily created for species planted in developed sites, such as streets, yards, boulevards, and parks. If you are interested in projected changes in habitat suitability for native species in natural areas, see the Climate Change Tree Atlas at <u>www.sf.ed.us/nrs/atlas/</u>.

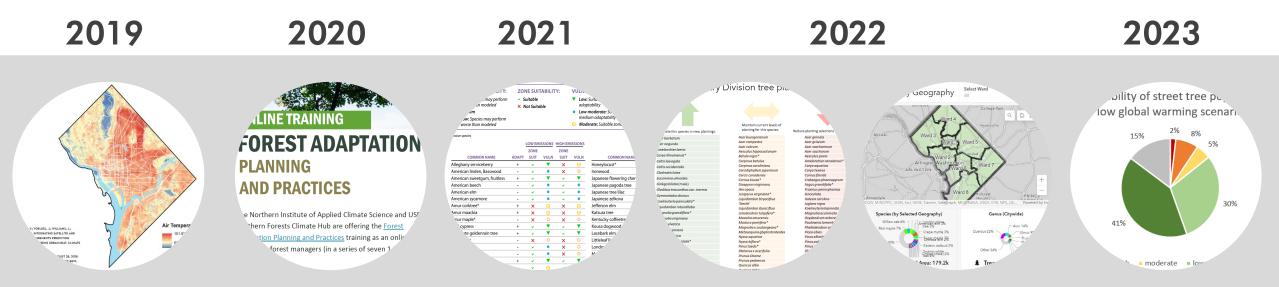
Current and projected USDA Hardiness Zones and AHS Heat Zones for Washington, D.C. Hardiness zone is determined by the average lowest temperature over a 30 year period. Heat zones are determined by the number of days above 86°F.

Time Period	Hardiness Z	one Range	Heat Zone Range			
1980-2010	1	7	7			
	Low Emissions	High Emissions	Low Emissions	High Emissions		
2010-2039	7	8	7 to 8	8		
2040-2069	7 to 8	8	8	9		
2070-2099	8	8 to 9	8	9 to 10		

SOURCE: Adaptability scores were assigned using methods developed in an urban forest vulnerability assessment for Charado by Brandt et al. 2017 (<u>https://www.kf.fed.</u> <u>us/ns/ubis/gridt_n_ns168.pdf</u>). Future heat and hardiness zone information were provided from: <u>https://usfs.mapsa.gr.gis.com/apps/MapSeries/index.</u> <u>html?appid=9088b1068ed=03bb3b352df0197ae440.</u>

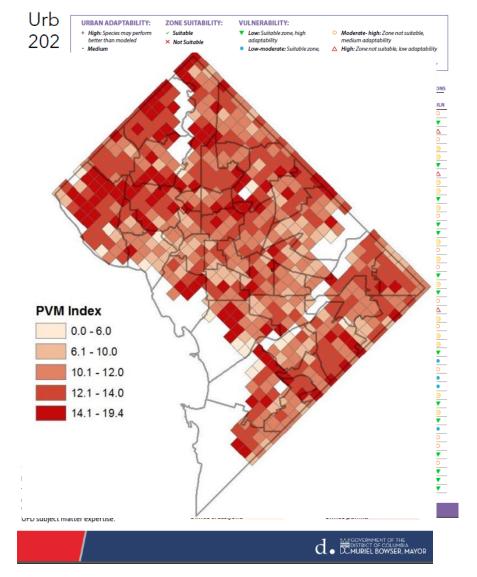
www.forestadaptation.org

URBAN ADAPTABILITY:	ZONE SUITABILITY:	VULNERABILITY:	
 High: Species may perform better than modeled 	 Suitable Not Suitable 	 Low: Suitable zone, high adaptability 	Moderate- high: Zone not suitable, medium adaptability
 Medium Low: Species may perform 		 Low-moderate: Suitable zone, medium adaptability 	High: Zone not suitable, low adaptability
worse than modeled		😑 Moderate: Suitable zone, low adaptat	bility or zone not suitable, high adaptability

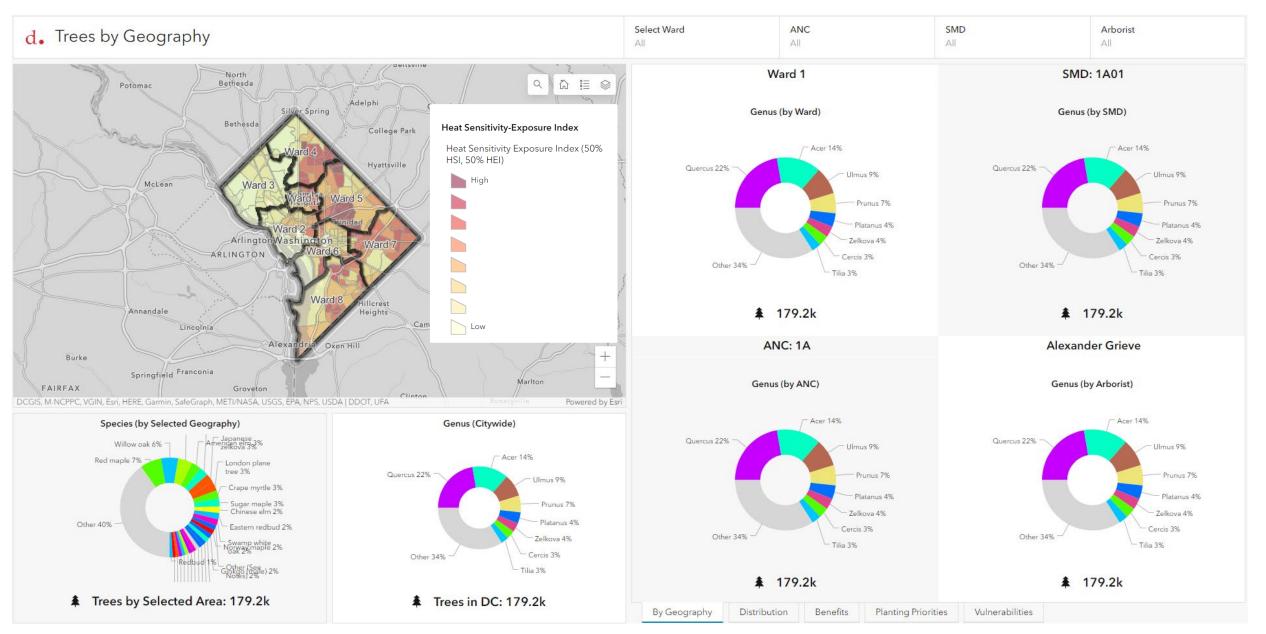

"Investive spe

*Invasive species											
	LOW EMISSIONS HIGH EMISSIONS					LOW EM	ISSIONS	HIGH EM	ISSIONS		
	-	ZONE		ZONE				ZONE		ZONE	
COMMON NAME	ADAPT	SUIT	VULN	SUIT	VULN	COMMON NAME	ADAPT	SUIT	VULN	SUIT	VULN
Alleghany serviceberry	+	×	•	×	Θ	Honeylocust*		×	٠	×	0
American linden, Basswood			•	×	0	Ironwood	+	~	•	~	•
American sweetgum, fruitless	+	× .	•	~	•	Japanese flowering cherry	-	×	Δ	×	Δ
American beech		× .	•	~	٠	Japanese pagoda tree		~	٠	×	0
American elm		×	•	~	٠	Japanese tree lilac	+	×	Θ	×	Θ
American sycamore		×	•	~	٠	Japanese zelkova	+	~	•	×	Θ
Amur corktree*	+	×	Θ	×	Θ	Jefferson elm	+	× .	•	~	•
Amur maackia	+	×	Θ	×	Θ	Katsura tree	-	~	Θ	×	Δ
Amur maple*		×	0	×	0	Kentucky coffeetree	+	~	•	×	Θ
Bald cypress	+	~	•	~	•	Kousa dogwood	+	~	•	×	Θ
Bipinnate goldenrain tree	+	×	•	~	•	Lacebark elm	+	~	•	~	•
Black alder		×	0	×	0	Littleleaf linden	+	×	Θ	×	Θ
Black locust		~	٠	×	0	London planetree		~	٠	×	0
Black oak		×	٠	×	0	Musclewood	+	~	•	~	•
Black tupelo, Black gum	+	×	•	~	•	New Harmony elm	+	~	•	~	•
Black walnut	-	~	Θ	~	Θ	Northern red oak	+	~	•	×	Θ
Blackjack oak	-	~	Θ	~	Θ	Northern white cedar, Arborvitae		×	0	×	0
Boxelder		×	•	×	0	Norway maple*	+	×	Θ	×	Θ
Bur oak		×	٠	×	0	Norway spruce		×	0	×	0
Callery pear*		~	•	×	0	Nutall oak	+	~	•	~	•
Carolina silverbell		×	0	×	0	Okame cherry	+	~	•	×	Θ
Chestnut oak	+	~	•	×	Θ	Osage-orange	+		•	~	•
Chinese fringetree	+	~	•	~		Overcup oak		~	٠	×	0
Chinese magnolia	+	×	Θ	×	Θ	Paperbark maple	-	~	Θ	×	Δ
Chinese pistachio		~	•	~	•	Persian parrotia	+	~	•	×	0
Chokecherry		×	0	×	0	Pin oak		×	0	×	0
Common hackberry	+	~	•	~	•	Post oak	-	~	Θ	~	Θ
Common horsechestnut		~	•	×	0	Princess tree*	+	~		×	0
Crapemyrtle	+	~	•	~		Princeton elm	+	~		~	
Dawn redwood		~	•	×	0	Red buckeye		~	•	~	•
Downy serviceberry	+	~		~		Red horsechesnut		~	•	×	0
Eastern hemlock	-	×	À	×		Red maple		~	•	~	•
Eastern redbud		~	•	×	0	River birch		~	•	~	•
Eastern redcedar	+	~	•	~		Sawtooth oak*	+	~	•	×	Θ
Eastern serviceberry		×	0	×	0	Scarlet oak	+	~		~	
Eastern white pine	-	×	Δ	×	Δ	Shingle oak	+	~		×	0
English oak		~	•	×	0	Shumard oak	+	~		~	
European hornbeam	+	~	•	×	θ	Siberian elm*		~	•	~	•
European mountain ash	+	×	ė	x	ĕ	Silver linden		×	0	×	0
Flowering dogwood		- Ç-	•	- Ç	•	Silver maple	÷.	- -	•	x	0
Ginkgo	+			×	0	Smoothleaf elm	+		•		
Goldenrain tree*	+	÷	÷	÷		Sour cherry	-	÷		×	•
Green ash		÷	•	÷		Sourwood	+	÷.	÷	÷	
Hardy rubbertree	+	×	0	×	0	Southern live oak	+	÷.	÷	÷	÷
Hedge maple	+	- - -		Ŷ	<u> </u>	Southern magnolia	+	~	÷	÷.	÷
			•	~	<u> </u>				•		•

Climate change and urban forest management in the District



Urban heat mapping Assessing climate vulnerability and adaptation planning Prioritizing tree species Decision supporEvaluating tool: progress implementation



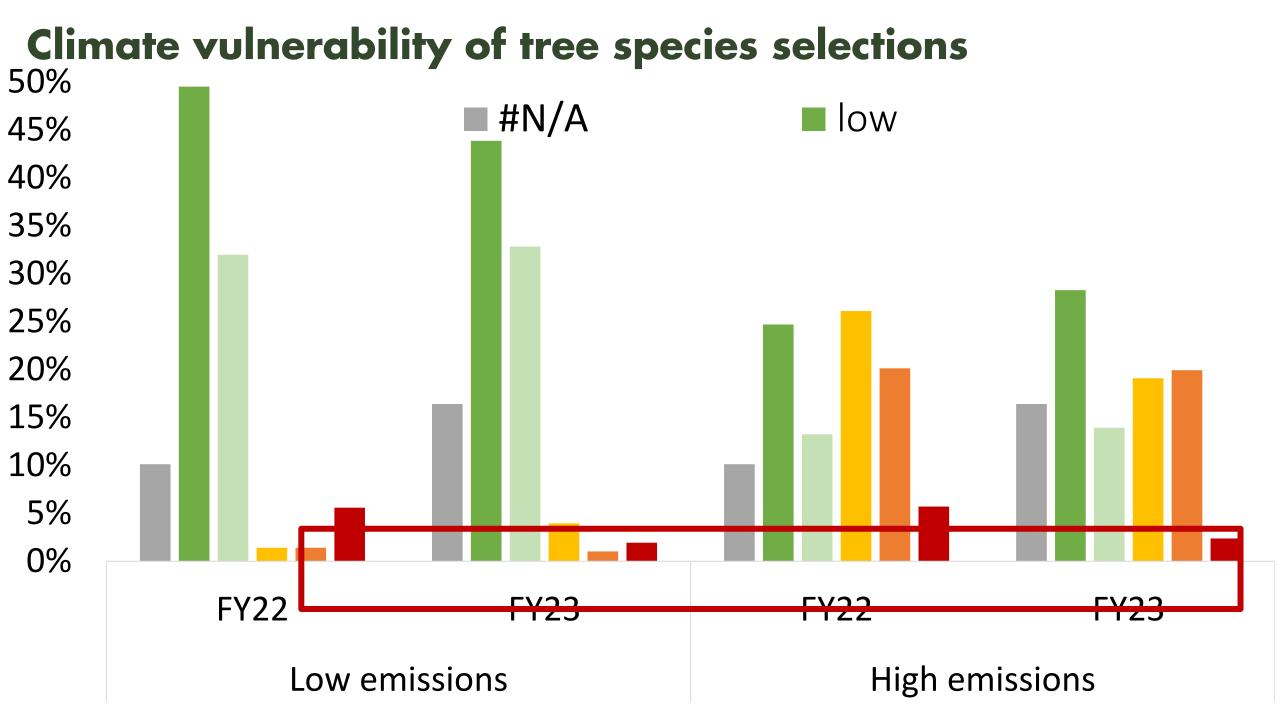
Prioritizing tree species selections

- Available data and resources
 - Tree atlas and NIACS climate vulnerability
 - Pest vulnerability matrix
 - Subject matter expertise
 - Tree mortality study data
- Urban foresters ranked tree species
- Prioritized tree list for planting

Decision support tool

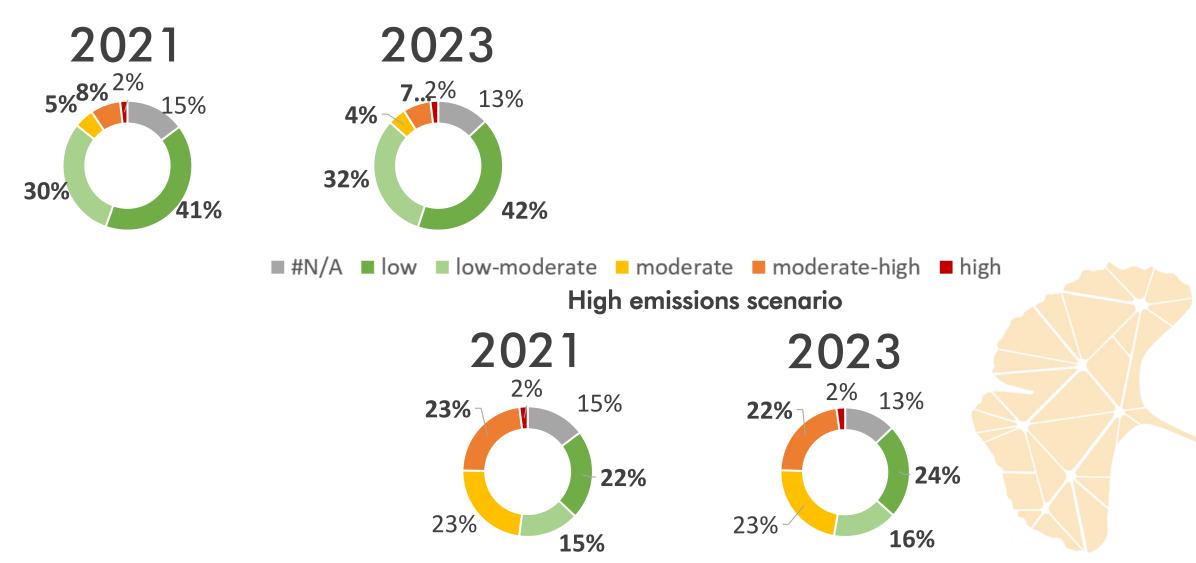

Decision support tool

Adoption of tree species priority list


Tree planting selections by priority list

- Maintain Count
- # species/cultivars =
 137

Promote Count


species/cultivars =
197

Climate vulnerability of street tree population

Low emissions scenario

Next steps

Annual evaluation of planting selections

 Integrate climate vulnerability into public tree inventory (Open Data DC)

Apply climate vulnerability to Urban
 Forest Inventory and Analysis data

https://climatereadyforests.dc.gov/

Thank you

Kasey M Yturralde, PhD

Urban and Community Forestry **US Forest Service** kasey.yturralde@usda.gov

District Department of Transportation

Urban Forestry Division

https://trees.dc.gov/

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Planning, designing and managing the urban forest to strengthen its resilience to external shocks.

Kampala Urban Tree Audit and Forestry Plan

Presented by

Padde Daniel Kampala Capital City Authority, Uganda 18th October, 2023

Kampala – Capital City of Uganda

□ Total area of 189 sq. Km(4,668.3 Ha)

□ Regarded the Garden city of Africa (KPDP, 2012)

Contributes 60% of the national GDP (KCCA, 2014)

 \Box Area size – 189 Km Sq.

Popln: Resident: 1.65million & day time 4.5 million (UBOS, 2014)

Kampala URBAN FOREST

A system of trees growing on public, private and institutional land within the city and its suburb limits. urban forest is a valuable natural resources that has a number of benefits that enhance the overall environment quality of places where people live and work

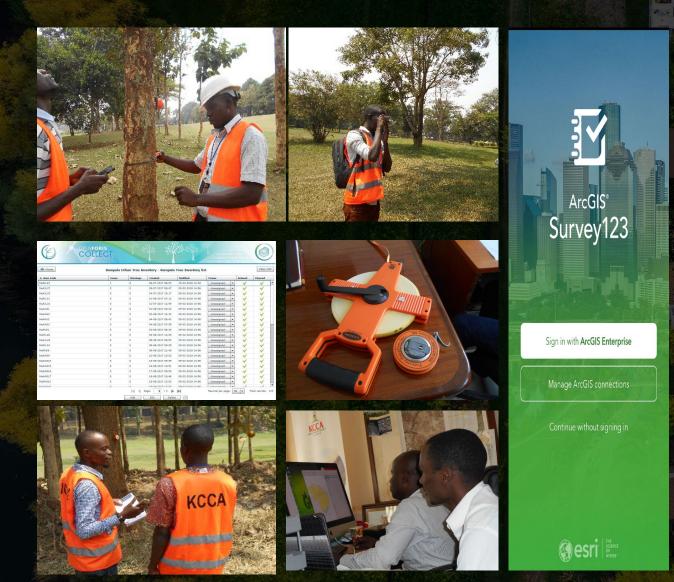
As a vital, living component of the city. Their interaction with other necessities such as buildings adversely impacts their normal life expectancy

Limited by planting spaces, compacted poor soils, reflected heat and inadequate water, e

As a result, urban trees must be treated to a sound, figurous, and purposeful management regime in order to perform successfully in their surrounding. Provide significant community benefits while remaining reasonably safe for surrounding homes and individuals

Benefits of the Urban Forest

tree cover area, run-off is reduced by


ed<mark>a demand for electricity by 1</mark> ce average annual electric üse H<u>ellis, Ion</u>.08 2015)

On average a tree captures and stores 22 kg carbon dioxide equivalent per year

UWAFU TREE anarium hweinfurthii

Air quality, Biodiversity conservation, Flood mitigation, Social cohesion, nutrition supplement, UHI effect reduction

Kampala Tree Audit : Know the trees to manage

Tree inventory

1. Develop tree data base for the city

2. Assessment for tree health

3. Estimate the carbon stock and sequestration potential

4. Develop an urban forestry plan

Kampala Tree Audit

Pilot in 2016/17 in Central, expanded to Kawempe in 2020/21 and Nakawa and Rubaga in 2023

105,671 trees Audited to date

Estimated av. canopy cover of 15%
A tree density of 13 trees/acre
80% Exotic and 20% Native

Kampala Tree Audit

Over 328 species, 13 being Nationally & internationally protected

■43 fruit tree species, *Persea americana* is the most abundant fruit tree with 31.4%

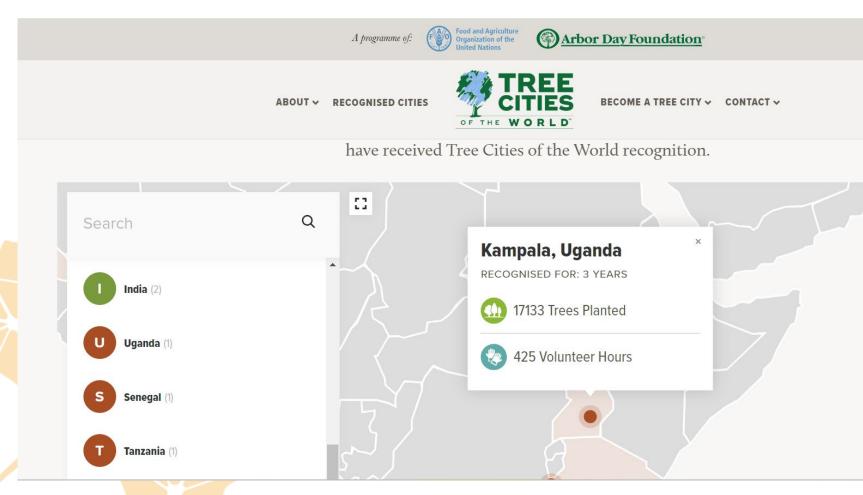
□125 ornamental species, Palms are the most abundant, with *Roystonea regia* at 10.67%

Kampala Forestry Plan 2019 - 2039

Vision: By 2039, Kampala's Urban Forest will be abundant, diverse healthy, self reliant and cared for by all and will contribute to the safetyof our community and creation of a lush green attractive and livable city in the region.

Goal

Enhance and Maintain Conserve & protect urban tree canopy cover

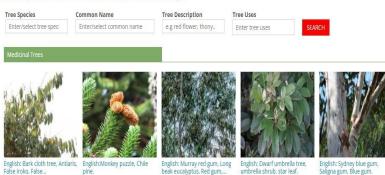

Objectives

Increase the tree density of the Urban forest
 Develop an Urban Forestry framework
 Increase the diversity of native species
 Increase awareness of the urban forest mgt

Tree Cities of the World Recognition- FAO, 2022

- Recognized for 3 years running on urban forest mgt standards
- 2020 only city in Africa to attain recognition

- Establish Responsibility
- Set the Rules
- Know What You Have
- Allocate the Resources
- Celebrate
 Achievements


Importance of the Urban Tree Audit

Kampala Tree & Palm Directory

ABOUT US DIRECTORATES PROJECTS TENDERS SERVICES CAREERS OPEN GOV FAOS CONTACT US

Kampala Tree and Palm Directory

Public Tree

Inventory

KAMPALA CAPITAL New Survey

Kampala Public Tree Survey Statistics

TREE DATA COLL 0 tree(s)

Copyright © 2018 Kampala Public Tree Survey | Kampala Capital City Authorit For a better city

KAMPALA CAPITAL CITY AUTHORITY

2 1 73% T 3:56

Tree(s) Information

TREE INFORMATION Species:

Meters Feet

Tree Age(yrs):

Green Infrastructure ordinance

Tree Valuation, A criteria to attach monetary value to our trees in the cit Carbon sequestration methodology, enable us estimate annual carbon sank

Other Projects being undertaken

KAMPALA CAPITAL CITY AUTHORITY KCCA PICTORIAL SELECTION OF SPECIES FOUND IN NAKAWA, CENTRAL & KAWEMPE DIVISIONS 5 mg KAWEMPE NAKAWA CENTRAL Gaba 0.80.4 0 0.8 1.6 2.4 3.2 LEGEND RDINATE SYSTEM LVICTOR 60 UTM Zone 36N \square R パ KAMPALA PARISHE "Transverse_Mercator sting: 500000.0 CENTRAL DIVISION ht: KCCA GIS Unit, August 2023 KAWEMPE DIVISION NAKAWA DIVISIO

Kampala Blue-Green Master Plan development

Kampala Biodiversity Survey (Fauna)

"With out data you are just another Person with an Opinion"

W. Edwards Deming- Data Scientist

Thank you

PADDE | Kampala Capital City Authority

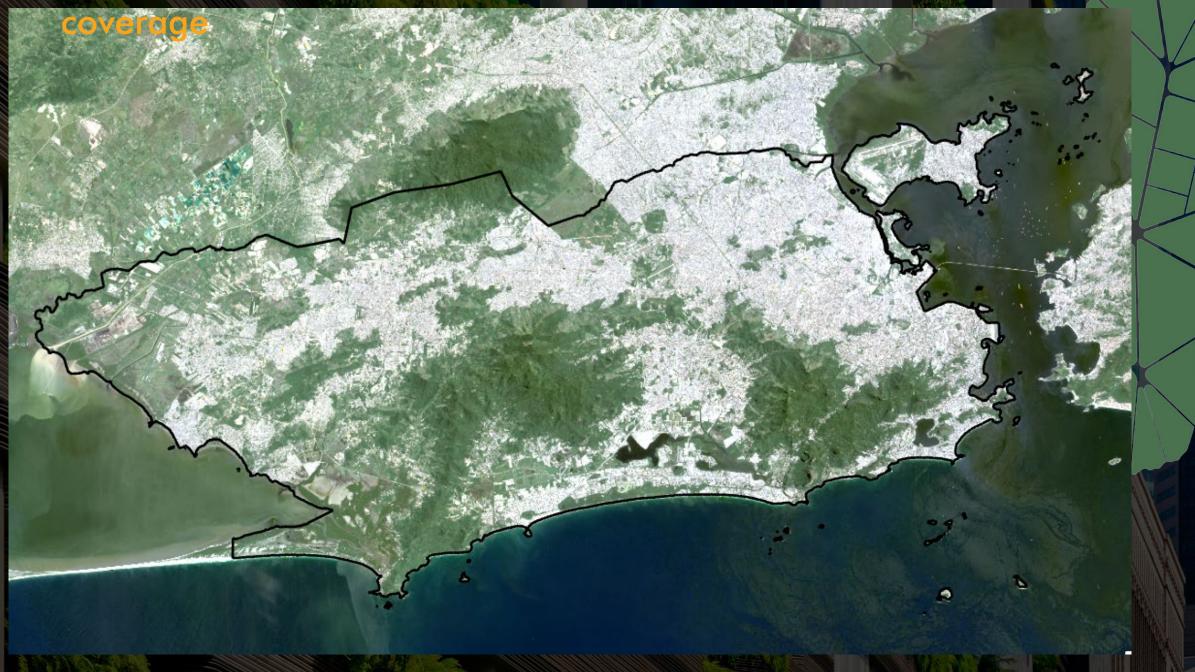
Urban Forester

danpaddeyes@gmail.com ldpadde@ kcca.go.ug + 256 759361867

2nd World Forum on Urban Forests 2023

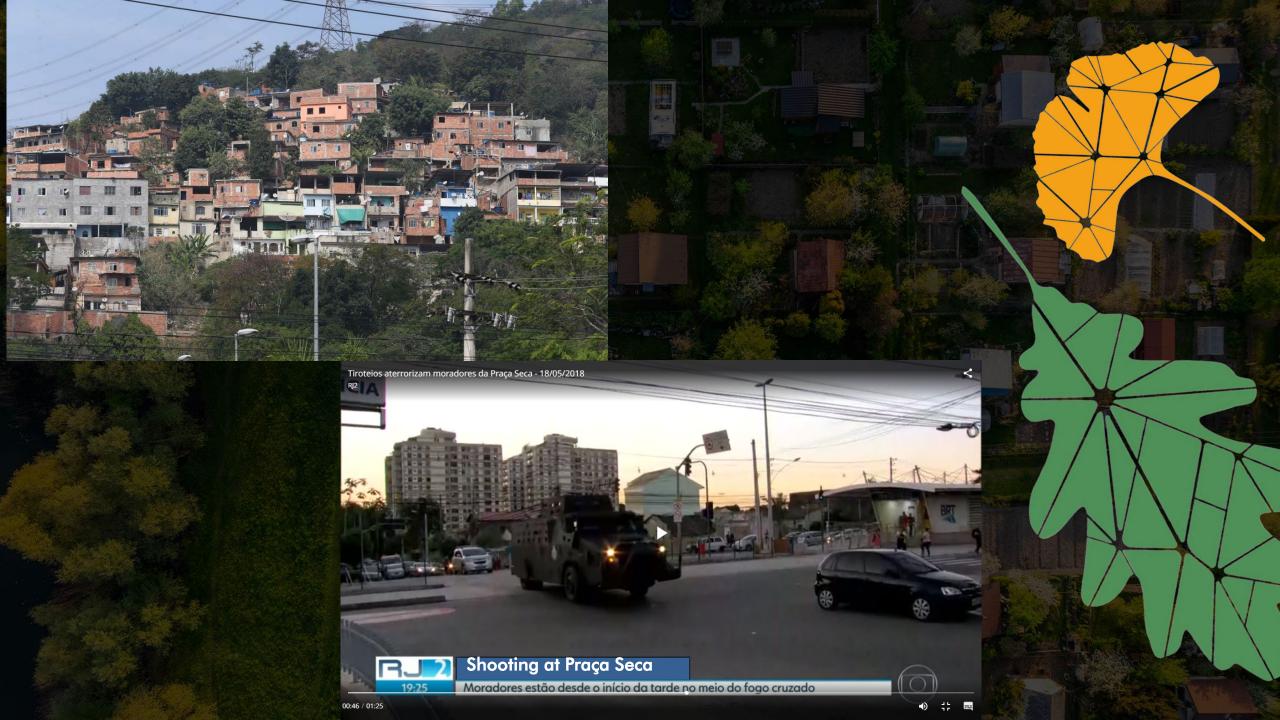
World Forum on Urban Forests

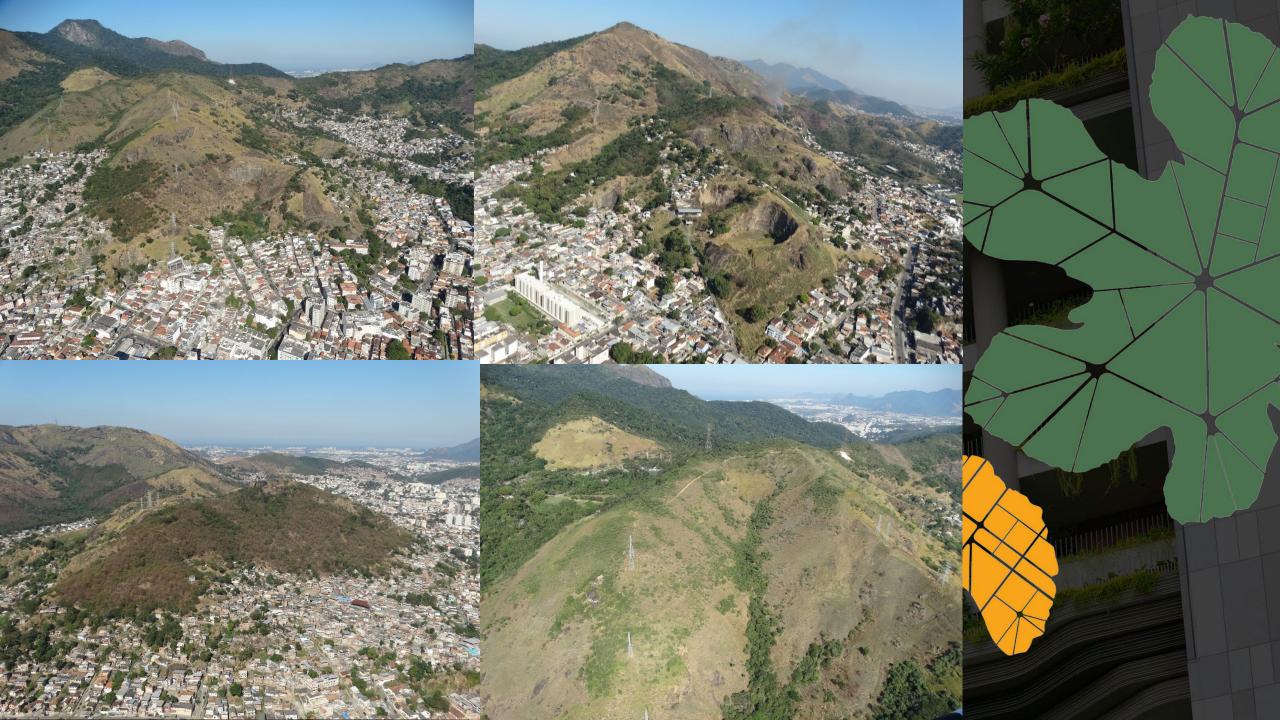
Role of popular participation in the management of protected areas in a context of intense formal and informal urbanization pressure



Presented by

Luiz Octavio de Lima Pedreira


Rio de Janeiro City has 1205 km2, and 50% of green


The city has 67 Protected Areas – PA under city management, many of these areas overlap each other, occupying 26% of its total area. Of these, only 15 have Management Councils, and of these only 7 are active. PA must have a Management Council - MC, whose function is to assist the head of the UC in its management and integrate it with the population and the actions carried out in its surroundings. The MC must have representation from public bodies, both from the environmental and related areas (scientific research, education, national defense, culture, tourism, landscape, architecture, archeology and indigenous peoples and agricultural settlements), and from civil society, such as the resident and surrounding population, traditional population, indigenous peoples, property owners within the PA, workers and the private sector operating in the region, scientific community and non-governmental organizations with proven performance in the region.

We analyzed aspects of the effectiveness of urban PA creation and management implementation, in a context of severe formal and informal urbanization pressure, and the role of citizenship governance on PA management.

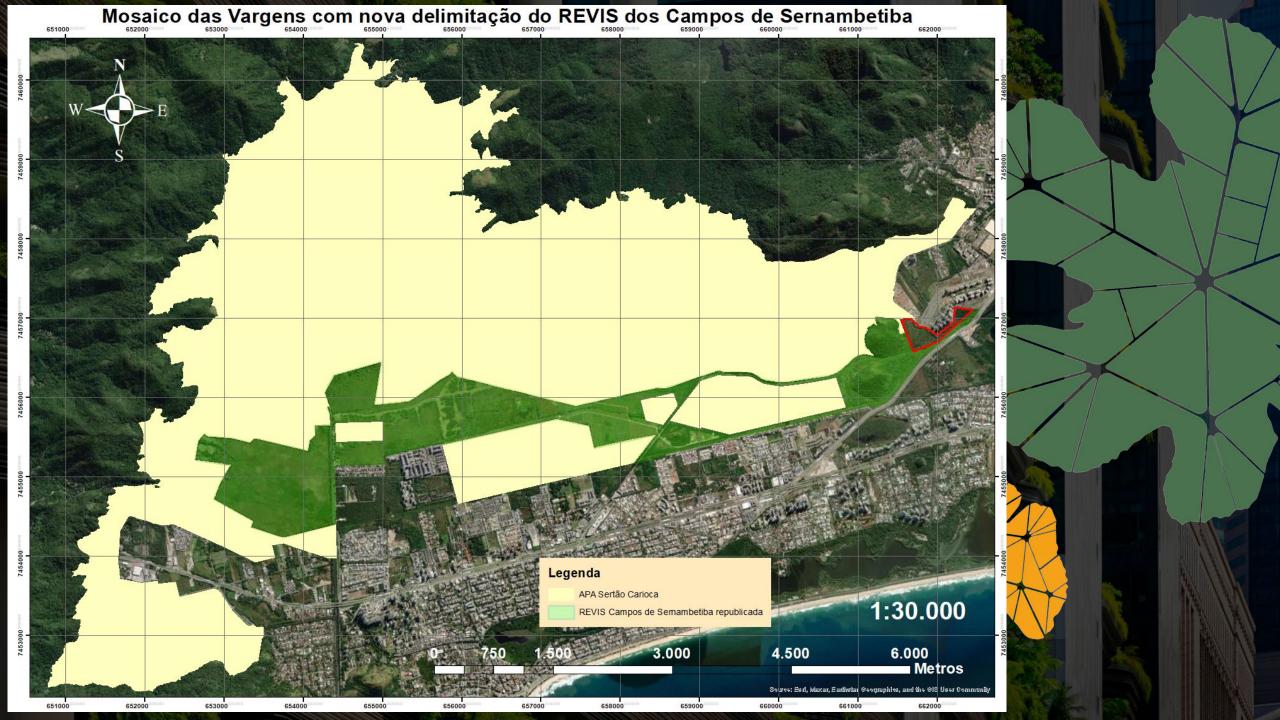
Environmental Protection Areas – APA (acronym in Portuguese) are a kind of PA of sustainable use, covering public and private lands. Serra dos Pretos Forros APA was created in 2000, with 27,26 km², it has almost half of its area densely urbanized, with slumps and low-income neighborhoods, and vast areas covered by invasive exotic grasses, subject to annual anthropic fire, areas under forest restoration, and some areas covered with natural forests. Many of these areas are in a state of war between drug factions and paramilitary groups.

In August 2018, the City Hall was ordered by the court to implement the MC, with equal participation from civil society and public agencies, and to coordinate the process of elaboration of the area's Management Plan - MP. In November 2018, the City's Environmental Office appointed a manager to the area, with the mission to coordinate the creation of the MC and the elaboration of the MP.

One year after, the council was created, had approved its Internal Rules, and had held five meetings, and there was a group working in the elaboration of the MP, process that was interrupted some months later with the advent of the COVID19 pandemic. After changing the area's manager in September 2020, the hole process stopped, until February 2021, when a new manager was appointed, who reactivated the MC, which has been active since then, even though the process of elaboration of the MP for the area has not been resumed.

SERRA DOS PRETOS FORROS APA MC MEMBERS

Instituto Naturalis – NGO ACALMA – NGO AMA Freguesia - Residents' Association FAM Rio - Residents' Association Federation Água Mineral Santa Cruz – Company SMAC - Rio de Janeiro Municipal Environmental Office ICMBIO - National Biodiversity Institute INEA - Environmental State Institute SMU – Rio de Janeiro Municipal Urbanism Office SMH – Rio de Janeiro Municipal Housing Office


More than twenty years after, the Sertão Carioca APA was created, but its goal to protect natural remnants of the natural environment is under risk. Despite the main objective of the area being the protection of the remnants of the herbaceous marsh, dominated by the herbaceous taboa, Typha domingensis Pers., the fish of the Rivulidae family and the swampy forests, dominated by the tree caixeta Tabebuia cassinoides (Lam.) DC., the proposed zoning for the area foresees the possibility of building, with the opening of drainage channels, landfill and elevation of the grade, in more than 70% of the area, which implies the suppression of this natural environment.

SERTÃO CARIOCA APA MC MEMBERS **CBH-BG - Watershed Committee IEDHMA – NGO AMAVAG - Residents' Association AMOR - Residents' Association** Ecomarapendi – NGO Associação de Moradores da Santa Luzia - Residents' Association Movimento Baía Viva - NGO **Alphaville Foundation Rio de Janeiro Municipal Environmental Office National Biodiversity Institute Environmental State Institute Rio de Janeiro Municipal Education Secretary Rio de Janeiro Municipal Guard UFF – Fluminense Federal University** UERJ – Rio de Janeiro State University UFRJ – Rio de Janeiro Federal University

Taboa

Rivulidae

Caixeta

QUADRO DE ÁREAS

Sertão Carioca APA Total Area: 3.247 hectares.

Área ZOC: 2.240 (69%) Área ZVS: 1.007 (31%)

REVIS dos Campos de Sernambetiba Total Area: 543 ha

> Mosaico das Vargens Total Area: 3.790 ha

With a strong development pression, of both formal and informal stakeholders, it seems that the reason to create this protected area will be impossible to realize. To avoid the suppression of the vegetation on these wetlands, and the flora and fauna that it supports, the civil society, organized in a MC, focus on the elaboration of the MP to revert the area zonation.

The Protected Areas Management Councils of these areas represent a civil society governance structure to ensure the implementation of the objectives foreseen when these areas were created, they represent the last hope to these natural remnants of the urban forests.

Thank you, Let's Make a Better World, One Tree at a Time

Luiz Pedreira **Rio de Janeiro City Environmental and Climate Office ISA CA**

lolprj@gmail.com

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Holistic Biomass Management:

Integrating Workforce Development & Wood Utilization in Philadelphia

Presented by

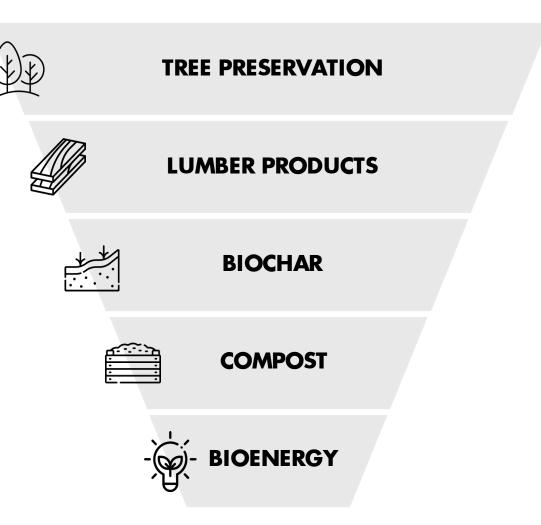
Cambium Carbon

Ben Christensen, Co-Founder & CEO Alicia Blake, Sr. Environmental Analyst

US urban forests generate **46 million tons** of wood waste annually

Effective utilization of that wood can reduce greenhouse gas emissions by **251 million MT** while providing economic & social co-benefits

Trees come down for a variety of reasons.



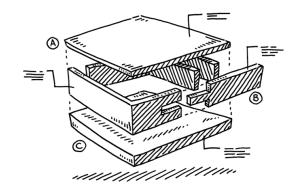
HIERARCHY OF WOODY BIOMASS UTILIZATION

We believe there is a way to maximize impact after removal.

Cambium Carbon uses technology to build local, regenerative supply chains.

We enable our partners to save wood from landfill, creating beautiful products with social & environmental impact.

Our team works to help cities process urban forest wood waste into value- added goods.



The Vision: Carbon Smart Wood Cities

Trees require removal due to death, disaster, development, disease

Profits support urban canopy regeneration

Wood is up-cycled into value-added products

This model thrives when different partners are brought together.

WOOD GENERATORS

WOOD PROCESSORS

SECONDARY WOOD USERS

COMMUNITY GROUPS

Philadelphia Reforestation Hub

A first-of-its kind publicprivate-partnership model for lumber processing and job training.

WORKFORCE DEVELOPMENT

3

-

망

和源意

1140

Wood-Mize

Building a national movement of Carbon Smart Wood Cities

How might you engage to maximize impact through woody biomass utilization?

City, Municipality, or **Gov't Agency**

Act as the voice, connector of parties, and policy advocate

Sawmill or **Organics Recycling Center**

Expertise to put woody biomass to its highest and best use

Designer, Architect, or **Procurement**

Key to utilizing the offtake and developing a market

Workforce **Development** Agency

Provides high-skilled jobs and tree canopy resiliency

Let's work together.

City, Municipality, or Gov't Agency

Program Assessment, Design, & Implementation

Sawmill or Organics Recycling Center

Technology platform to support scaling material

Designer, Architect, or Procurement

Connect to a hyperlocal and green materials

Workforce Development Agency

Enhance your green infrastructure curriculum

Assessment & Design 6 to 12 months **Pilot** 12 to 18 months Implementation & Scaling Up 12 months +

Let us know how we can create value for you.

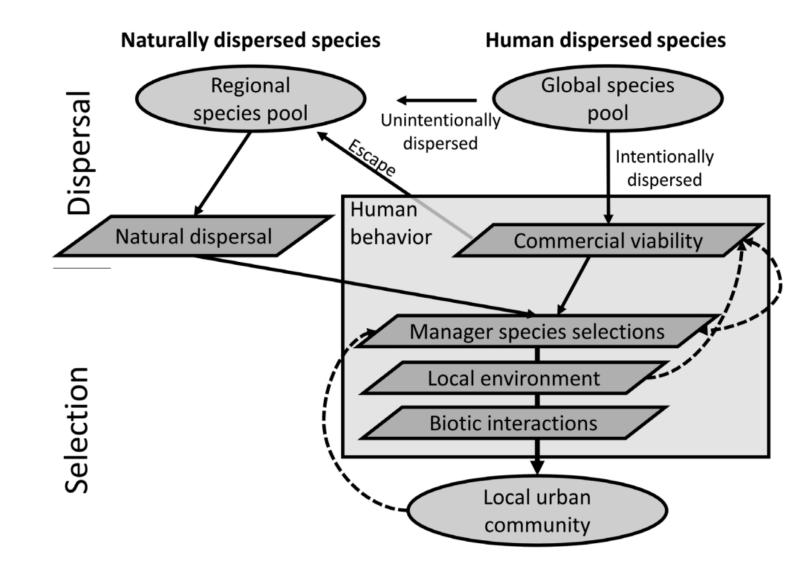
Thank you

Ben Christensen I ben@cambiumcarbon.com

Alicia Blake I alicia@cambiumcarbon.com

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

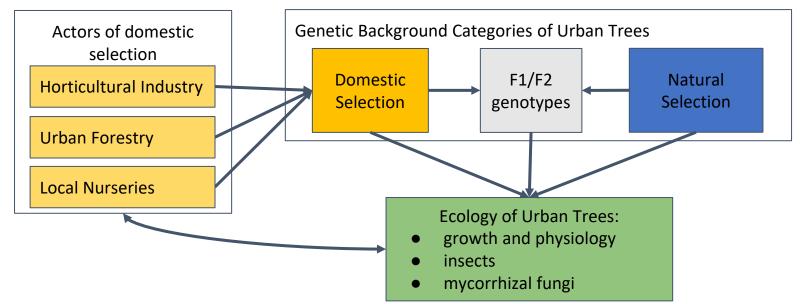

Selection in the City: understanding the roles of natural and domestic selection in shaping urban forests

Nancy F. Sonti, USDA Forest Service

Dexter Locke, Meghan Avolio, Karin Burghardt, Eva Perry, Beatriz Shobe, Morgan Grove

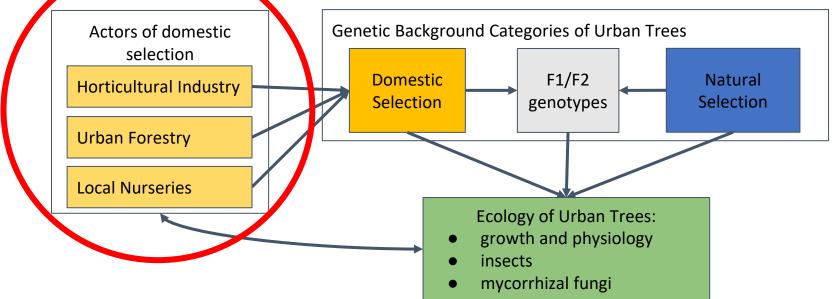
Natural, Artificial, and Domestic Selection

Avolio et al. 2021 Oikos



Objective: Study the influence of domestic selection on the genetic diversity of urban trees and potential consequences for ecosystem services

- Urban trees provide many important ecosystem services
- Many urban trees are planted and sourced from nurseries
- Artificial selection is the selection of desirable traits by the *breeder*
- Domestic selection incorporates artificial selection and
 - Decisions about which trees to breed by *nurseries* and growers
 - Decisions about which trees to plant by land managers and urban forestry practitioners
- Planted cultivars can be clones of one another and have limited to no genetic variation among individuals


Selection in the City: Study Objectives

- Examine domestic selection and the process of selecting and disseminating cultivars from the horticultural industry to urban tree planting organizations.
- Determine whether genotypes and genetic material from domestic selection are migrating into surrounding forests.
- Investigate whether genotype identity (e.g. original cultivar, F1/F2 generations, or wild type) affects physiological traits and associated insect and mycorrhizal communities.

Selection in the City: Study Objectives

- Examine domestic selection and the process of selecting and disseminating cultivars from the horticultural industry to urban tree planting organizations.
- Determine whether genotypes and genetic material from domestic selection are migrating into surrounding forests.
- Investigate whether genotype identity (e.g. original cultivar, F1/F2 generations, or wild type) affects physiological traits and associated insect and mycorrhizal communities.

Supply Chain Analysis

- Conduct a supply chain analysis for Baltimore City using snowball sampling
- Aim to interview nurseries, breeders, and tree planting organizations to understand motivations behind choosing species/cultivars to produce and plant

Recent work from other regions of the US

Urban Forestry & Urban Greening 62 (2021) 127183

Contents lists available at ScienceDirect

Urban Forestry & Urban Greening

journal homepage: www.elsevier.com/locate/ufug

Relationships between consultant discipline and specified tree diversity: A case study of two Iowa (USA) communities

Grant L. Thompson^{a,*}, Audrey McCombs^b, Marcus D. Jansen^a

^a Department of Horticulture, Iowa State University, 2206 Osborn Drive, Ames, IA, 50011, United States
^b Department of Statistics and Ecology and Evolutionary Biology Program, Iowa State University, 2438 Osborn Dr, Ames, IA, 50011, United States

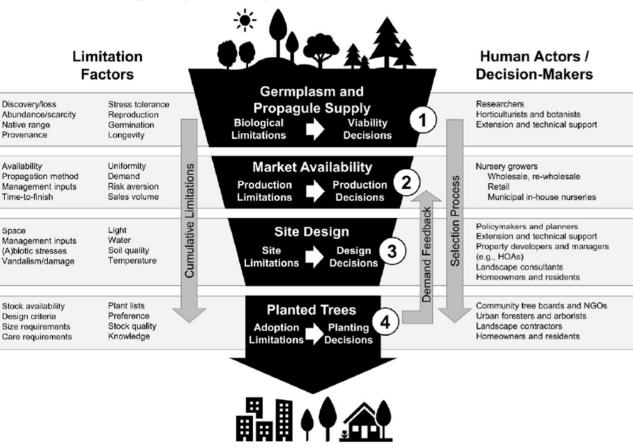
SOCIETY & NATURAL RESOURCES https://doi.org/10.1080/08941920.2023.2175285

Check for updates

Check for updates

Expanding Urban Tree Species Diversity in Florida (USA): Challenges and Opportunities for Practitioners

Deborah R. Hilbert^a (), Andrew K. Koeser^a, Michael Andreu^b, Mysha Clarke^b, Gail Hansen^c (), Lara A. Roman^d, and Mack Thetford^e


Ambio 2023, 52:1532–1542 https://doi.org/10.1007/s13280-023-01876-7

PERSPECTIVE

Conceptualizing the human drivers of low tree diversity in planted urban landscapes

Deborah R. Hilbert , Andrew K. Koeser, Michael G. Andreu, Gail Hansen, Lara A. Roman, Mack Thetford, Grant L. Thompson

Regionally or Globally Sourced Broad Pool of Tree Taxa

Limited Pool of Tree Taxa for Local Urban Use

Urban tree supply chain: who is involved?

- Breeders
- Propagators (whips/liners)
- Nurseries (differing clientele)
- Urban forestry practitioners
 - Direct planting activities
 - Shape policy (tree lists)
 - Tree giveaways
- Who are we missing?
 - Landscape architects
 - Contractors tree planting
 - (Residential and other private landowners)

Urban tree supply chain: interviews

- Understand the decisions made along the supply chain to breed, grow, sell, and plant red and Norway maple trees in Baltimore City
- Explore broader considerations of tree diversity at genetic or species level
- How do these decisions impact genetic diversity of trees planted and growing in Baltimore?
- How have these decisions changed over time?

Urban tree supply chain: interviews

- How do you decide which species and cultivars to breed/grow/sell/plant?
- Which red and Norway maple cultivars are being bred/grown/sold/planted? Which traits are being selected for these species?
- What are the benefits/drawbacks of these two species and their cultivars?
- In addition to showy traits, do you consider tolerance to urban conditions? climate resilience? genetic diversity?
- What do customers want most when selecting trees? Why are they selecting red and Norway maple? (or why not?)
- Future plans for providing these species/cultivars?

Maryland Tree Solutions Now Act: 5 million trees by 2030

How has the recent Maryland state legislation changed the conversation around:

- nursery production?
- urban tree planting?
- climate resilience of cultivars?
- genetic diversity of planted tree populations?

Preliminary results

- Tree planting orgs and landscape architects rarely have quantitative goals for diversity, though most do strive to increase diversity in a qualitative sense
- Can be difficult to enforce goals/targets for diversity throughout the network of decisions
- Aesthetics and familiarity are drive many tree planting decisions rather than genetic diversity or climate adaptation
- People tend to grow and plant what they know

Preliminary results

- Norway maple rarely used (only by landscape architects in projects outside the city)
- Red maple is polarizing overplanted in Baltimore but still a landscape architect favorite
- Straight species of red maples only used in "conservation" type projects, otherwise cultivars
- Logistical challenges to expanding production of some native species (e.g., Carya spp)
- Seed-grown trees may have slower or more variable growth rates than cultivars or are less predictable in other ways, leading to product/resource waste

Thank you

Nancy Falxa Sonti | USDA Forest Service

🖾 nancy.f.sonti@ usda.g

OV

2nd World Forum on Urban Forests 2023

World Forum on Urban Forests

Building Resilient Cities 30 Years' of China's Urban Forest Development

Presented by

Prof. Wendy Y. Chen The University of Hong Kong

Urban Forests in China

- In ancient Chinese cities: planting trees along rivers/streets, maintaining tree stands around houses
 - Food source
 - Feng-shui
 - Scenery

- Since 1992, urban forestry has been formally recognized as an academic discipline
 - An umbrella term that supersedes the traditional urban-rural distinction
 - Flexible, integrative, multidisciplinary problem-solving approaches
- Investment in urban forest has been increased
 - From 5.3 billion USD in 2005 to 36.2 billion USD in 2018

• Significant increase of urban forest coverage

 $-\,1980\text{--}2018\text{:}\,1100\;km^2$ to 30471 km^2

- A shift of urban greening strategy
 - 1990s-2000s: beautifying urban and peri-urban landscape and enhancing recreational function
 - Green landscapes: "the face of the city"
 - 2000s-2010s: urban forests as a countermeasure to environmental stresses
 - Forest belts in peri-urban areas: sand storms

• Since 2010s: urban forests as a visual manifestation of ecological civilization

- No resilient and healthy cities without urban forests
- Constructing resilient cities for which ecological resilience and a synergistic provision of diverse ecosystem services have been emphasized

• Recreational function is enhanced: with low

Ecological functionality is declined in the majority of cities

	Recreation	Habitat
In(Population)	-2.275**	-11.944**
	(1.227)	(6.088)
In(Land size)	0.273	1.808
	(0.582)	(2.859)
In(GDP/capita)	3.417***	-13.143**
	(1.180)	(5.260)
Ecozone	0.225	10.960***
	(0.585)	(3.619)
Constant	-30.885***	73.626**
	(10.042)	(43.265)
Hausman test/Wald χ2	23.38***	18.07***
R-squared	0.225	0.278

A solid knowledge base about the multifaceted characteristics of urban forests and comprehensive criteria for evaluating resilient urban forests and resilient cities!

Thank you

Wendy Y. Chen

CLEARINGHOUSE 中欧城市森林应对方案

PP-23-3570

World Forum on Urban Forests

CEUS

Session 3.2: Do the right thing: Planning, designing and managing the urban forest to strengthen its resilience to external shocks