

Phytoremediation: Trees as "green medicine" to heal earth, bodies, and minds from urban pollution

Presented by

Ronald S. Zalesny Jr.¹, Elizabeth R. Rogers^{1,2}, Ryan A. Vinhal¹, Chung-Ho Lin², Liza Paqueo³

¹ USDA Forest Service, Northern Research Station, Rhinelander, Wisconsin, USA
 ² University of Missouri, Center for Agroforestry, Columbia, Missouri, USA
 ³ USDA Forest Service, International Programs, Washington, District of Columbia, USA

Poll:

On a scale of 1-5, how familiar are you with **phytotechnologies**?

1 – Not familiar at all
2 – Have heard the word
3 – Know a few examples
4 – Familiar with many examples
5 – Very familiar, have implemented

<u>Phytotechnologies</u>

"The strategic use of plants to solve environmental problems by remediating the qualities and quantities of our soil, water, and air resources and by restoring ecosystem services in managed landscapes."

-International Phytotechnology Society

The Science of Phytotechnologies

environ silviculture wildlifeecolo environmentalengineering 9 statistics geography physiology ture in papers wastemanagement. Cuttur of genetics sociolog hydrology 2011 att forestry biology 011 of forestry biology 011 of biotechnology geology mathematics biochemistry horticulture recreation agronomy

Examples:

Green Roofs / Eco Roofs Green Infrastructure Stormwater Wetlands Constructed Wetlands Bioswales / Rain Gardens Urban Tree Canopies Vegetative Forest Buffers **Brownfields Restoration** Mine Reclamation

Phytoremediation

Poll:

On a scale of 1-5, how familiar are you with **phytoremediation**?

1 – Not familiar at all
2 – Have heard the word
3 – Know a few examples
4 – Familiar with many examples
5 – Very familiar, have implemented

Phytoremediation

The use of trees to clean up contaminated soils and waters

Long-Term

Improved soil health Improved air quality Wind speed reduction

Carbon sequestration Pollution remediation

Phytoremediation Processes

Phytoextraction

Uptake of contaminants from the soil by plant roots, followed by translocation into harvestable plant biomass.

Pollutant

Phytodegradation

Also referred to as phytotransformation. It involves the degradation of complex organic molecules to simple molecules, or the incorporation of these molecules into plant tissues.

Degraded Pollutant

Rhizodegradation

Also known as phytostimulation. Rhizodegradation refers to the breakdown of contaminants within the plant root zone, or rhizosphere. It is believed to be carried out by bacteria or other microorganisms whose numbers typically flourish in the

DegradedPollutant

Phytovolatilization

0

0

The process of pollutant absorption by plants, followed by volatilization into the atmosphere by the foliar system.

Phytostabilization

 \bigcirc

 \bigcirc

Reduction of mobility and bioavailability of pollutants in the environment, either by physical or chemical effects.

Stabilized Pollutant

Phytoextraction

0

 \odot

Phytostabilization

Phytovolatilization

Phytodegradation

Rhizodegradation

 \bigcirc

Brownfields

Organic Contaminants: Asbestos, petroleum and hydrocarbons, polycyclic aromati hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), VOCs, dioxin, pesticides Inorganic Contaminants: Arsenic, lead, cadmium, chromium, mercury Health Impacts: Liver toxicity, endocrine disorder, respiratory diseases, increased cancer risk

Stormwater

Organic Contaminants: Antifreeze, grease, oil, and heavy metals from cars; fertilizer, pesticides, and chemicals from gardens, homes, and businesses

Biological Contaminants: Bacteria from pet wastes and failing septic systems

Health Impacts: Decreased semen quality in men; higher miscarriages in women; premature menopause; increased risk of birth defects in children

Air

Volatile Organic Compounds (VOCs): Increased cancer risk and endocrine disorder Particulate Matter (PM): Respiratory and vascular illnesses in urban areas **Odor: Effects upon mood and psychological functioning**

Mental Health Benefits of Phytoremediation

Accessible greenspace for positive mood changing and reducing stress

Phytoncides - emitted volatile organic compounds (VOCs) to reduce stress and lower blood pressure

Improved psychological wellbeing through improved financial wellness and security, increased real estate value, and creation of green space.

Smell of urban forest - provide the elders and patients with experiences of memoryrecall and multi-sensory stimulation

Phytoremediation Applications

Pollution Mitigation

Phytotechnologies

Human Wellbeing

Land Restoration

Pollution Mitigation

Land Restoration

Phytotechnologies

Human Wellbeing

Riparian Buffers

Stormwater Management

Phytotechnologies

Human Wellbeing

Land Restoration

Rain Gardens

Constructed Wetlands

Stormwater Management

Bioswales

Land

Restoration

Phytotechnology Applications

Pollution Mitigation

Phytotechnologies

Urban Trees

Human Wellbeing

Urban Forests

Urban Foraging and Environmental Justice

Dunning-Read Conservation Area

Friends of the Parks

<u>Objectives</u>

Collect edible & medicinal plants that are used in urban foraging Collect soils adjacent to the plants, as well as in "control" areas throughout the site Test metal levels in the plants & soils Correlate plant & soil levels Assess whether metal levels exceed values safe for human consumption

Chicago, Illinois, USA

American Indian Center of Chicago

Mine Reclamation

Pollution Mitigation

Land Restoration

Phytotechnologies

Brownfield Restoration

Human Wellbeing

Our Work...

Phyto-recurrent selection

- Phytoremediation of inorganic and organic contaminants
- Salt tolerance and salinity thresholds (including sodic soils)
- Biochar: a sustainable soil amendment
- Reclaiming and restoring lands degraded from mining
- Green infrastructure and stormwater management
- Brownfields restoration
- Wastewater applications
- Prioritizing landfill contaminants for environmental remediation
- Agroforestry phytoremediation buffer systems

The Phytoremediation Procedure

Step 1: Problem Identification

Identify the Problem: Contaminants

ORGANIC CONTAMINANTS

Pollutant compounds that typically contain bonds of carbon, oxygen, and nitrogen

Figure 2.2 Organic vs Inorganic Pollutants

Cd Zn As

INORGANIC CONTAMINANTS

Elemental pollutants found on the periodic table that have been released into the environment

Kennen and Kirkwood (2015)

Organic Pollutants				
	Typical Source of Pollutants in this Category			
Toluene, PAHs and	Fuel spills, petroleum extraction, leaky storage tanks, industrial uses, railway corridors			
d organic ent	Dry cleaners, military activities, industrial uses			
	Military activities, munitions manufacturing and storage			
and Fungicides	Agricultural and landscape applications, railway and transportation corridors, residential spraying for termites and pests			
s): DDT, DDE,	Agricultural and landscape applications of historic pesticides, former industry, atmospheric deposition			
naldehyde,	Aircraft de-icing fluids, embalming fluids, wastewater			

Inorganic Pollutants				
	Typical Source of Pollutants in this category			
Phosphorus	Wastewater, stormwater, agriculture and landscape applications, landfill leachate			
n, Nickel	Mining, industrial uses, agricultural applications, roadways, landfill leachate, pigments, lead paint, emissions			
Calcium	Agricultural activities, roadways, mining, industrial uses			
nd	Military activities, energy production			

Identify the Problem: Contaminants

Figure 2.13b Phytotechnology Mechanism Summary Table

on	Name	Description	Contaminant type addressed: organic or inorganic
	Phytodegradation	Plant destroys it	\bigcirc
R	Rhizodegradation	Soil biology destroys it	0
$\bigcirc \square $	Phytovolatilization	Plant turns it into a gas	
208	Phytometabolism	Plant uses it in growth, incorporates it into biomass	
	Phytoextraction	Plant takes it up, stores it and is harvested	\bigcirc
	Phytohydraulics	Plant draws it close and contains it with water	
	Phytostabilization/ Phytosequestration	Plant caps and holds it in place	
	Rhizofiltration	Contaminant is filtored from	
21/2×1		and soil	\bigcirc

Identify the Problem: Ecological and Human Health Concerns

Contaminant-specific health effects?

Habitat degradation?

Interaction with other contaminants?

Proximity to sensitive species / ecosystems?

Step 2: Project Preparation

Identify Necessary Resources

Financial resources

- Identify funding opportunities
 - Government
 - Private organization
- Plan for all funding throughout the lifespan of the phytoremediation system

Personnel resources

- Permanent Staff
- Temporary Staff
 - Summer staff
 - ➤ Interns
 - Volunteers

Equipment Needs

- Sampling Equipment
- Planting Equipment
- Lab Analysis Equipment
- Machinery

Stakeholder/Partners

- Identify potential stakeholders:
 - Government agencies
 - Non-profit organizations
 - Industry
 - University
 - General public
- Identify current partners and build partnerships with others to gain expertise and resources

Project Implementation

- ٠

Site Preparation

- Debris removal ۲
- Plowing ٠
- Tilling •
- Herbicide application •
- Irrigation installation •
- Incorporating soil amendments •

Data Collection

Plant Parameters (growth, health, physiology, contaminant uptake) • Soil parameters (physical and chemical properties) • Other parameters (weather, initial site parameters)

Step 3: Species Selection

Specialized Traits

Short Rotation Woody Crops (SRWCs)

Fast-growing trees such as poplars (*Populus* L.), willows (*Salix* L.), eucalypts (*Eucalyptus* L'Hér), pines (*Pinus* L.), and other species that are dedicated to the provision of biomass feedstocks for energy, pulp, and solid wood products, as well as ecosystem services associated with restoration, environmental remediation, and community livelihoods. Zalesny et al. (2019) WIREs Energy Environ 8:e345

Potential Species – Example from India

Ficus religiosa L. (Peepal)

PC: https://borneoficus.info/

Ficus virens Aiton (Pilkhan)

Ficus racemosa L. (Gular)

Ficus benghalensis L. (Banyan)

Azadirachta indica A. Juss. (Neem)

Phytoremediation Species Databases

Phytoremediation Database

Stevie Famulari (former professor, North Dakota State University)

https://www.steviefamulari.net/phytoremediation/

- Database is fully online
- Information on over 450 plant species and over 70 contaminants
- Studies are classified based on remediation mechanisms and accumulation type

Phytoremediation

Instructions, which will open in a new tab, for the use of the tables are here

Select Contaminate(s) Search 	n Q 🗸		
Scientific Name	Common Name	Image	Contaminants
Sorghum halepense (L.)	Johnson Grass, Aleppo Grass		Aluminum, Arsenic, Cesium, Copp
Sparganium eurycarpum	Common Bur-reed		Lead
Solidago hispida	Hairy Golden Rod		Aluminum, Trichloroethylene (TC
Spartina pectinata	Prairie Cord Grass		Cadmium, Copper, Nitrogen
Spartina foliosa	Cordgrass		Atrazine, Petroleum, Trichloroeth
Spinacia oleracea	Spinach		20- Hydroxyecdysone
Spirea sp.	Neon Flash		Petroleum
Spirodela polyrhiza	Giant Duckweed		Aluminum, Arsenic, Cadmium, Ni
Stellaria calycantha	Northern Starwort		Cadmium
Stellaria media	Chickweed		Cesium

Phytoremediation Species Databases

Phytoremediation Database

Kansas State University Department of Agronomy http://www.agronomy.ksu.edu/extension/phytoremediation

- Database is a Microsoft Access file (.mdb)
- Information on over 1,000 plant species and over 100 contaminants
- Includes case studies describing field-scale phytoremediation systems
- Studies are classified based on remediation mechanisms and success

Search by Con	taminant cies			
Search References	by Author or Keyv	vord		
Database Informatio	on			
Choose associat Specie	a species to view ted references s	Contaminant the contaminants	that it has been use	ed to remediate and the
Filter th multiple	Filter the results based on the c multiple items from a list.		v. Hold down ctrl to	choose
evapotra hydraulii multiple phytode phytoext phytosta phytovol	Inspiration ca c control fit gradation gr traction hy abilization la latilization lit gradation na ration pi	ise study eenhouse owth chamber ydroponic b t. review atural lot	biosolids cover soil groundwater hydroponic mixed media soil sediment sludge surface water wetland	Not Successful Conditionally Successful Successful Insufficient Information
rhizofiltr toleranci unknown	n			

Phyto-Recurrent Selection

Test. Select. Deploy.

Stepwise selection process involving multiple selection cyc select clones with superior performance

Cycle 1: 140 varieties

Greenhouse Testing

International Journal of Phytoremediation, 9:513-530, 2007 Copyright @ Taylor & Francis Group, LLC ISSN: 1522-6514 print / 1549-7879 online DOI: 10.1080/15226510701709754

CHOOSING TREE GENOTYPES FOR PHYTOREMEDIATION OF LANDFILL LEACHATE USING PHYTO-RECURRENT SELECTION

Jill A. Zalesny

Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, USA

Ronald S. Zalesny Jr. and Adam H. Wiese

USDA Forest Service, Northern Research Station, Institute for Applied Ecosystem Studies, Rhinelander, Wisconsin, USA

Richard B. Hall

Department of Natural Resource Ecology and Management, Iowa State University,

Field Implementation and Testing

Phyto-Recurrent Selection

Test. Select. Deploy.

Multiple growing seasons until harvest

Field Implementation and Testing

Proper tree selection is crucial!

TL

04:00 PM 05/28/21

113F

STEALTH CAM

21 Days

his ma

STEALTH CAM

Phyto-Recurrent Selection for Communities

Traditional Knowledge

Practical Knowledge

Phyto-Recurrent Selection

Scientific Knowledge

Phyto-Recurrent Selection Endorsed as a 'Good Practice' by the United Nations

Phyto-Recurrent Selection

Test. Select. Deploy.

Phyto-recurrent selection to enhance ecosystem services and livelihoods in rural and urban communities

Description:

Phyto-recurrent selection is a technique for selecting and monitoring optimal varieties of trees to be implemented within phytotechnology applications. Typical applications where phyto-recurrent selection has been successfully applied include

Organization:

USDA Forest Service, Northern Research Station

Partners:

University of Missouri, Center for Agroforestry Missouri University of Science and Technology University of Minnesota Duluth, Natural Resources Research Institute Waste Management, Inc. AECOM Technical Services, Inc. City of Manitowoc, Wisconsin Marquette County Solid Waste Management Authority Delta County Solid Waste Management Authority

Reviewers: 🖸 Robin Chazdon 🎦 Mahoussi Simone Assocle 🎦 Anita Diederichsen America

Submitted: 2023-03-22 Published: 2023-05-30 Updated: 2023-03-22

Good Practice

Scan Here to Learn More!

Step 4: Project Implementation

Project Implementation

Plant Material

- Seeds
- Cuttings
- Poles
- Saplings

Experimental Design

- # of species
- # of plants per species
- Spacing
- Physical location in field

Equipment

- Planting Equipment
 - Shovel
 - Dibble bar
 - Tractor
 - Hydroseeder
- Spacing equipment
 - Measuring tape
 - Beaded cable
 - PVC grid

Project Implementation

Protection from Browse / Vandalism

- Fencing
- Materials to install fencing
- Signage

Other Materials

- Irrigation
- Backfilling
- Soil amendments

Step 5: Data Collection and Monitoring

Long-Term Monitoring

- Necessary to evaluate the performance of a system over time, and to better understand remediation mechanisms, clonal differences
- Long-term phyto projects that maintain the plantings and collect data are rare, but important

Growth Measurements

Height Measurements

Tools: meter stick, extendable height pole Frequency of measurements: annual

Ecophysiology Measurements

Chlorophyll Fluorescence

Tool: Hansatech Pocket PEA Frequency of measurements: depends on study objectives

Stomatal Conductance

Tool: Li-COR LI-600

Frequency of measurements: depends on study objectives

SPAD (leaf greenness)

Tool: SPAD meter

Frequency of measurements: depends on study objectives

Ecophysiology Measurements

Sap Flow Monitoring

Tools: Dynamax thermal dissipation probes and datalogger

Frequency of measurements:

every 15 minutes during growing season

Leaf Water Potential

Tool: PMS Instruments Pressure Chamber Frequency of measurements: depends on study objectives

Soil and Tissue Sampling

Frequency of measurements: beginning, end, other

Belowground Tissues

Tools: soil corer, shovel Frequency of measurements: \geq 1 per study

Aboveground Tissues Tools: broad assortment Frequency of measurements: \geq 1 per study

Step 6: Data Analysis and Synthesis

Data Analysis

Correlations Analyses of variance (ANOVA) Analyses of means (ANOM) Simple regressions Multivariate analyses Multiple regressions Multivariate analyses of variance (MANOVA) Principal component analyses (PCA) Canonical correlation analyses

	ļ	AutoSave 💽 Off) [∃ 9 · ° · -		2018	Cycle 3 Datashe
	Fi	ile Home	li	nsert Page Layo	ut Formul	as Data	Review
	Piv	otTable Name:	Acti	ive Field:	<u>∧</u> .= -		\rightarrow Group Sele
	Piv	/otTable1	Ave	erage of DIAM	T-E Ex	pand Field	。 回日 Ungroup
	1	Options ~		Field Settings Down	Drill -= Co	llapse Field	Group Field
		PivotTable	<u></u>	Activ	re Field		Group
	A	3 •	-	$\times \checkmark f_x$	Average of [MAIG	
		А		В	С	D	E
	1						
	2	Average of D		Column Labols			
	3 4	Row Labels		ESCS	MUNI	NESC	ONTE
	5	BM001		4.5766666667	3.99	4.45	4.0066666667
	6	BM004		4.35	4.4	5.406666667	4.12
	7	BM008		4.91	4.11	5.533333333	5.39
	8	BM010		6.196666667	5.123333333	6.206666667	5.096666667
	9	BM012		4.333333333	4.643333333	5	5.106666667
	10	DA001		3.23	2.87	4.243333333	3.363333333
	11	DA002		3.503333333	3.88	4.433333333	3.2333333333
	12	DA003		3,723333333	3.19	4.08	3.06
	14	DA012		3.203333333	3.9766666667	4.25	2.94
	15	DA013		3.8	4.24	4.92	3.63
	16	DA018		3.603333333	3.27	4.56	3.1
	17	DA020		3.2	3.473333333	4.126666667	2.6
	18	DA022		4.166666667	4.373333333	4.61	3.58
	19	RZ163		4.023333333	3.406666667	4.63	3.623333333
١	20	R7177		4.470000007	4.5	4.745555555	4.10
Į	22	RZ185		4.583333333	4.02	5.3333333333	3.65
	23	RZ187		4.6066666667	4.4	4.96	4.056666667
	24	RZ188		4.426666667	4.286666667	5.443333333	4.456666667
	25	RZ191		5.11	5.623333333	5.966666667	4.51
	26	RZ192		4.1266666667	3.763333333	4.436666667	3.336666667
	27	RZ193		4 956666667	5 202222222	5.3/666666/	4.63
	20 29	Grand Total		4.287777778	4.173472222	4.9275	4.0000000000
	30						5150
	31						
	32						
	33						
	34						
	35						

ets FINAL 3 worki	ing copy 🗸			∫ Sear	rch							
View Help	Acrobat	PivotTable A	nalyz	e Desi	ign							
tion Insert Slicer	Insert Fil Timeline Conne Filter	ter Refres	h Cha Sc Data	nge Data ource ~	Clear Select	t Move PivotTable	Fields, Items, & Sets ~	OLAP Re Tools ~	EK E lationships	PivotChart Recommer PivotTab Tools	hded Field +/- List Buttons Show	Field Headers
F	G	Н		PivotT Choose fie	Table Fiel	ds :port:						
POTT	WONT	Grand Total		Search								
5.493333333	4.646666667	4.527222222										
5.426666667	4.396666667	4.683333333		NEW0								
6.136666667	4.916666667	5.166111111			TMENT							
7.303333333	4.796666667	5.787222222			К							
6.216666667	4.566666667	4.97777778)R							
5.313333333	4.16	3.863333333			hel(text)							
4.99	4.516666667	4.102777778										
5.083333333	4.03	3.983888889			ILIMBER							
5.243333333	3.66	3.93	-		ты							
4.903333333	3.953333333	3.871111111										

	4.00			ALIVE	I
83333333	4.03	3.983888889	-		
43333333	3.66	3.93			
03333333	3.953333333	3.871111111		L HEALTH	
4.94	4.586666667	4.352777778		LEAFAREA	
4.22	4.496666667	3.875		HEIGHT	
16666667	3.793333333	3.618333333		✓ DIAM	
56666667	4.14	4.421111111		TOTALLEAFNUM	
5.47	4.506666667	4.276666667		ROOTNUM	
96666667	5.163333333	4.743333333		LEAFDW	
03333333	5.186666667	5.000555556		C ROOTDW	
83333333	4.89	4.71		STEMDW	
63333333	4.886666667	4.928888889		ROOTSHOOT	
5.37	4.816666667	4.766470588			
5.95	5.093333333	5.375555556			
13333333	3.75	4.121111111		Drag fields between areas below:	
6.78	4.683333333	5.335		T Filters	Columns
86666667	5.4	5.473333333		· · · · · · · · · · · · · · · · · · ·	
97323944	4.543194444	4.578352668			IREATMENT
				= Paur	Σ. Values
					~ values
				NEWCLONE	Average of DIAM

Excel Pivot Tables

Data Synthesis and Reporting

- 1. Know your stakeholders build relationships
- 2. Participate in the community
- 3. Produce content with relevant messaging
- 4. Explore diverse types of content

USDA USDA Forest Service	Journal of Environmental Management 284 (2021) 112031			
Northern Research Station	Contents lists available at ScienceDirect			
	Journal of Environmental Management			
Rooted in Research	FI SEVIER journal homepage: http://www.elsevier.com/locate/jenvman			
ISSUE 10 JUNE 2022	۲			
	A systematic approach for prioritizing landfill pollutants based on toxicity:			
Pollution Solutions: Maximizing the Cleaning Power of Trees	Applications and opportunities			
ronation solutions. Maximizing the cleaning rower of frees	Elizabeth R. Rogers ^{a, b, c} , Ronald S. Zalesny Jr. ^c , Chung-Ho Lin ^{a, b,*}			
It is hard to imagine the vast expanse of the Great Lakes being anything but pristine, yet trouble roils just beneath the surface. Along with an increase in the use of electronics, pharmaceuticals, - The prioritization method developed by the team uses the	⁶ Center for Agroforestry, University of Masouri – Columbia, 203 Anhunor-Buch Natural Resources Bidg, Columbia, MO, USA ⁸ School of Natural Resources, University of Masouri – Columbia, MO, USA ⁶ Institute for Agolied Ecosystem Studies, USDA Forest Sorvice, Northern Research Station, 5985, Highwey K, Rhinelander, WI, USA			
and personal care products comes an increase in the pollutants that are pumped into the environment every day. clean up.	ARTICLE INFO ABSTRACT			
 "In the Great Lakes region, we are used to having an abundance of fresh water," says Liz Rogers, a Pathways Intern at the U.S. Department of Agriculture, Forest Service's Northern Research Station (NRS). The Great Lakes contain roughly 90 percent of the world's freshwater supply. "If pollution to the Great Lakes continues unchecked, the freshwater we drink, fish we eat, and recreation oportunities the lakes provide could all be affected, changing our ways of life as we know them." Poplar and willow trees have a longstanding history of successfully removing pollutants from soil and waterways. Trees chosen through a process called phyto-encurrent selection can be pto optimize their effectiveness. Measuring how phytoremediation unfolds throughout the life cycle of the tree could help site management decisions. Leading-edge planting methods developed by researchers could enhance the success of phytoremediation systems. 	Kowsek Landfills in the United States are a significant source optimion to ground and surface water. Current environmental regulations enguire detection and/or monitoring assessments of landfill leachts for contaminants that Contaminants and have been deemed particularly harmful. However, the lists of contaminants to be monitored are not competentiation waters over space and time, and thus the contaminants. The methy is the strain of the main objectives of this study was been deemed particularly harmful. However, the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly in the main objectives of this study was been deemed particularly inclusion. A Human health. Con definition of the results of contaminants with available CAS numbers were identified. In viri, in two, and predicted human toxicity data form at least two reclarged for CONQ, and CTV Predictor, respectively. These data were integrated wising the Toxicological Priority index (TOAP) for the 322 contaminants with thad available backs of the datasing wated results of the details of the details from the details of the details from the details of the details form the states and applied objectives. The general achter served as a basis for comparison of the results from the details form the details and the details form the details of the details form the details of the details form the details was and the details form the details and the details form the details of the details form the details wastate the flexibility of this scheme are details form the detail			
Rogers and Ryan Vinhal, another USDA Pathways Intern, both work in the lab of Chung-196 OLin, an associate professor at the University of Missouri's Center for Agroforestry. Lin, Rogers,	The schemes outlined here can be used to identify the most harmful contaniants in environmental models in order to design the most relevant mitigation strategies and monitoring plans. Finally, three research diversions involving the combination of these prioritization schemes and non-target global metabolomic profiling are discussed.			
and Vinhal are working with Ron Zalesny, an NRS scientist based in Rhinelander, WI, who leads the Station's research on phytotechnologies—technologies that use trees to solve environmental problems—in urban and rural areas. The work of this team to establish standardized, customizable approaches is setting a new standard for tailoring the phytoremediation process to the needs of communities anywhere in the word.	1. Introduction factors. Recently, growing awareness of contaminants of emerging concern [CECa, senobiotic compounds such as personal care products, pollution. Though current comprehensive data do not exist, the privionmental Protection Agency (IPA) reported that the nearly 2000			
Zalesny with other NRS scientists in the Great Lakes region began studying and applying phytoremediation, a process that harnesses the power of trees to soak up and break down pollutants, back in 1995. Today, phytoremediation is among the most cost-effective approaches for capturing pollutants before they contaminate drinking water, disrupt recreation, or destroy essential wildlife habitat. In 2016, a team of NRS researchers	sctive landfills in the U.S. generate leachate flowr ranging from 3.5 to over 2 million b per day (U.S. 1994, 3000, Additionally, 165 landfill eachate is needed (Missoner et al., 2014). in in landfill leachate is needed (Missoner et al., 2014). Landfil polltrant pose an immediate threat to human health and daily flow of about 40,000 L. The phyriocochemical and biological composition of landfill leachate varies widely, depending on wate characteristics, moisture contract of the ware, hybydyedelogy of the cancer risk, acute toxicity, and genotoricy (Muhdrej et al., and landfill age (Chu et al., 1994; Kulliowaka and Klimink, 2000; Moody and Foursend, 2017). Landfill backate composition is dynamic with the flow is the service on ever classes of pollutants in the service of the service of the service of pollutants in the service on ever the second service of pollutants in the service on the service of pollutants in the service of the service of pollutants in the service of pollutants in the service of the service of pollutants in the service of the service of pollutants in the service of pollutants in the service of the service of pollutants in the service of the service of pollutants in the service of the service of the service of the service of pollutants in the service of the service of the service of the service of the se			
established a 16-site system of trees for phytoremediation—the	and fluctuates over time due to a combination of physical and societal et al. 2015). Incidental ingestion, dermal contact, and inhalation of			

* Corresponding author. Center for Agroforestry, University of Missouri – Columbia, 203 Anheuser-Busch Natural Resources Bldg., Columbia, MO, U E-mail address: linchu@missouri.edu (C.-H. Lin).

https://doi.org/10.1016/j.jenvman.2021.112031 Received 14 October 2020; Received in revised form 13 January 2021; Accepted 16 Jac UNIVERSITY College of Agriculture and Life Sciences

est replicated field-scale phyto

d. With funding from the Great Lakes Restoration I

cern, selecting trees best suited for the specific job at d measuring how the remediation process unfolds

Pioneering new tree that cleans pollution takes root in Bayfield

Rick Olivo For the Ashland Daily Press 🛛 Jul 31, 2023 🔍 o

Step 7: Project Closure

Before planting any phytoremediation project, consider what will happen to the planting at the end of the lifespan of the project

 Prepare to be adaptable as landowner/stakeholder objectives may change over time

End Uses of Phytoremediation Plantings

Biochar

Ensure that markets are available for end products prior to product creation

Bioproducts

End use products can vary based on contaminant uptake into wood

Activity: Pollution Mapping

What pollution exists in your home city?

Think of a specific instance where pollution affects your city.

Part 1: On a sticky note, answer the following questions:

- Where is the pollution located? City, Country
- Describe the pollution/contaminants. lacksquare
- What is the source of the pollution?
- What are the human health concerns from the pollution? What are the ecological concerns from the pollution?
- ullet

When you are done, place your sticky note on the wall under the corresponding continent.

Part 2: Get a sticker from the front of the room. Choose the color of sticker that corresponds to what type of pollution it is:

- Blue = water pollution
- Yellow = air pollution
- **Brown = soil pollution** ullet

Write the source of the pollution in the center of the sticker. Put your sticker on the wall map at the location of your pollution.

For More Presentations on Phytoremediation Please Visit:

October 16: River Birch Ballroom

1545-1600 Ron Zalesny Jr. Agroforestry phytoremediation buffer systems reduce water and soil pollution in the Great Lakes Basin, USA

1615-1630 Elizabeth Rogers A novel approach for enhancing the effectiveness of tree-based remediation systems

October 19: **USFS** International Programs Office 1 Thomas Circle, NW, Suite 400 Washington, DC 20005

0930-1230 Ron Zalesny Jr., Elizabeth Rogers, Ryan Vinhal, Chung-Ho Lin What is phytoremediation?

ryan.vinhal@usda.gov

linchu@ missouri.edu

ood and Agriculture Organization of the

- **Pryistald.zalesny@usda.gov**
- Elizabeth R. Rogers | USDA Forest
- **Proise abeth.r.rogers@usda.gov**
- Ryan A. Vinhal | USDA Forest Service
- Chung- Ho Lin | University of Missouri
- Liza Paqueo | USDA Forest Service
 - liza.paqueo@ usda.gov

Phytoremediation: Trees as "green medicine" to heal earth, bodies, and minds from urban pollution

PP-23-3585

World Forum on Urban Forests